Maison » Constitutive Equations

Constitutive Equations

A constitutive equation, or constitutive relation, is a mathematical relationship that describes how a specific material responds to external stimuli. In continuum mechanics, it connects cinématique quantities like strain to kinetic quantities like stress. For example, Hooke’s Law, [latex]\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}[/latex], is a constitutive equation for linear elastic solids, relating the stress tensor [latex]\boldsymbol{\sigma}[/latex] to the strain tensor [latex]\boldsymbol{\varepsilon}[/latex].

Constitutive equations are essential because the fundamental laws of continuum mécanique (conservation of mass, momentum, and energy) are universal and apply to all materials. However, different materials behave differently under the same loading conditions. A steel beam, a column of water, and a piece of rubber will all respond uniquely to an applied force. Constitutive equations provide the material-specific information needed to close the system of governing equations and obtain a unique solution for a given problem. They are determined experimentally and represent a mathematical model of a material’s behavior.

The complexity of constitutive equations varies greatly. The simplest models are for linear, isotropic materials. For a linear elastic solid, Hooke’s Law relates stress and strain linearly via a fourth-order stiffness tensor [latex]\mathbf{C}[/latex]. For a Newtonian fluid, the stress is linearly related to the rate of strain. However, many real-world materials exhibit much more complex behavior. Non-linear elasticity is needed for materials like rubber that undergo large deformations. Plasticity models describe permanent deformation after a yield stress is exceeded. Viscoelastic models, used for polymers, exhibit both fluid-like and solid-like characteristics, with their response depending on the rate of loading. Developing accurate constitutive models for advanced materials like composites, biological tissues, or granular materials is a major and ongoing area of research in mechanics.

UNESCO Nomenclature: 2210
– Mechanics

Type

Abstract System

Disruption

Substantial

Utilisation

Widespread Use

Precursors

  • Robert Hooke’s experiments on springs (‘ut tensio, sic vis’)
  • Isaac Newton’s concept of viscosity in fluids
  • The development of the mathematical concepts of stress and strain
  • Experimental testing of material properties

Applications

  • material selection in engineering design based on stress-strain behavior
  • simulation of non-newtonian fluids like ketchup or blood in cfd
  • modeling plasticity and permanent deformation in metal forming processes
  • geotechnical engineering for describing the behavior of soil and rock under load

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: constitutive equation, material model, stress-strain relationship, Hooke’s law, Newtonian fluid, viscoelasticity, plasticity, material properties

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi