A statistic indicating the goodness of fit of a model, representing the proportion of the variance in the dependent variable that is predictable from the independent variable(s). An R² of 1 indicates a perfect fit, while 0 indicates no linear relationship. It is calculated as [latex]R^2 \equiv 1 – \frac{SS_{res}}{SS_{tot}}[/latex], where [latex]SS_{res}[/latex] is the residual sum of squares.
Coefficient of Determination (R²)
- Karl Pearson
The coefficient of determination, R-squared, is a key metric for evaluating regression models. It provides an intuitive measure of how much of the variability in the outcome is captured by the model. It is derived from two key components. The first is the Total Sum of Squares ([latex]SS_{tot} = \sum_i (y_i – \bar{y})^2[/latex]), which measures the total variance in the dependent variable [latex]y[/latex]. The second is the Residual Sum of Squares ([latex]SS_{res} = \sum_i (y_i – \hat{y}_i)^2[/latex]), which measures the variance left unexplained by the model, where [latex]\hat{y}_i[/latex] is the predicted value.
The formula [latex]R^2 = 1 – SS_{res}/SS_{tot}[/latex] can be interpreted as the percentage of total variance that is ‘explained’ by the regression model. For instance, an R² of 0.75 means that 75% of the variability in the outcome can be accounted for by the predictors in the model. In simple linear regression, R² is simply the square of Pearson’s correlation coefficient (r) between the observed and predicted values.
However, R² has a significant limitation: it never decreases when a new predictor variable is added to the model, even if the new variable is irrelevant. This can be misleading and encourage overfitting. To counteract this, the Adjusted R-squared is often used. It modifies the R² value to account for the number of predictors in the model, providing a more accurate measure of goodness of fit for multiple regression.
Taper
Perturbation
Usage
Précurseurs
- Concept of variance and standard deviation
- Method of least squares
- Pearson’s product-moment correlation coefficient
- Analyse de la variance (ANOVA) principes
Applications
- evaluating the performance of predictive models in science and engineering
- model selection in econometrics and social sciences
- quantifying the proportion of variance explained by a set of predictors
- validating financial models for risk assessment
Brevets:
Idées d'innovations potentielles
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Inventions, innovations et principes techniques connexes