Maison » Calcul lambda

Calcul lambda

1930
  • Alonzo Church

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It forms the theoretical basis for functional programming languages like Lisp, Haskell, and F#.

Developed by Alonzo Church in the 1930s, lambda calculus provides a minimalist yet powerful cadre for defining and applying functions. Its entire syntax consists of just three components: variables (e.g., `x`), abstractions, and applications. An abstraction, or lambda function, is an anonymous function definition, written as [latex]\lambda x.M[/latex], where `x` is the input parameter and `M` is the body of the function. An application, written as `M N`, represents applying function `M` to argument `N`. Computation in lambda calculus proceeds through a process called beta reduction, where an application of a lambda function to an argument is resolved by substituting the argument for the bound variable within the function’s body. For example, applying [latex](\lambda x.x+1)[/latex] to `3` reduces to `3+1`.

Despite its sparse syntax, lambda calculus is Turing complete. It can represent numbers (Church numerals), booleans, data structures, and control flow (like recursion) purely through functions. This demonstrates that the concept of a function is sufficient for universal computation. This contrasts with the Turing machine model, which is based on state and mutation. The Church-Rosser theorem is a key property of lambda calculus, stating that the order in which reductions are applied does not change the final result, a property known as confluence. This makes reasoning about program behavior much simpler than in imperative models where the order of state changes is critical.

Lambda calculus has had a profound influence on langage de programmation design. It is the direct ancestor of the functional programming paradigm. Concepts that are now common in many languages, such as first-class functions (treating functions as data), higher-order functions (functions that take other functions as arguments), closures (functions that capture their lexical environment), and currying, all have their roots in lambda calculus. Languages like Lisp were among the first to implement these ideas, and modern languages from Haskell to JavaScript and Python have integrated them deeply into their design.

UNESCO Nomenclature: 1202
- Informatique

Taper

Système abstrait

Perturbation

Substancial

Usage

Utilisation généralisée

Précurseurs

  • Gottlob Frege’s work on formal logic and functions in his ‘Begriffsschrift’
  • Set theory developed by Georg Cantor
  • Work on mathematical logic by Bertrand Russell and Alfred North Whitehead in ‘Principia Mathematica’
  • Combinatory logic developed by Moses Schönfinkel and Haskell Curry

Applications

  • functional programming languages (lisp, haskell, f#, ocaml)
  • type theory research (e.g., calculus of constructions)
  • proof assistants (coq, agda, isabelle)
  • compiler design for functional languages
  • formel vérification de logiciel and hardware
  • the mapreduce programming model

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: lambda calculus, functional programming, alonzo church, beta reduction, higher-order functions, lisp, haskell, formal system, computability, type theory.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi