Maison » Bézout’s Theorem

Bézout’s Theorem

1779
  • Étienne Bézout

Bézout’s theorem is a fundamental statement in intersection theory. It asserts that the number of intersection points of two plane algebraic curves of degrees [latex]m[/latex] and [latex]n[/latex] is exactly [latex]mn[/latex], provided that one works in a projective plane over an algebraically closed field, counts points with multiplicity, and includes points at infinity where parallel asymptotes meet.

Bézout’s theorem elegantly quantifies the intersection of curves. In the standard affine plane, the number of intersections can be less than [latex]mn[/latex] for several reasons. First, some solutions might have complex coordinates. Second, lines that are parallel in the affine plane can be thought of as meeting at a ‘point at infinity’; moving to the projective plane [latex]\mathbb{P}^2[/latex] systematically includes these points. Third, some intersection points might be ‘degenerate’, such as a line being tangent to a circle. In this case, the single point of tangency must be counted with a multiplicity of two for the theorem to hold. The concept of intersection multiplicity is a crucial and subtle part of the theory that makes the count exact.

For example, a parabola ([latex]y=x^2[/latex], degree 2) and a line ([latex]y=ax+b[/latex], degree 1) should intersect at [latex]2 \times 1 = 2[/latex] points. This is clear when the line cuts through the parabola. When the line is tangent, there is one point, but it has multiplicity 2. If the line doesn’t intersect the parabola in the real plane, there are two intersection points with complex coordinates. The theorem generalizes to higher dimensions, stating that [latex]n[/latex] hypersurfaces of degrees [latex]d_1, \dots, d_n[/latex] in [latex]\mathbb{P}^n[/latex] intersect in exactly [latex]d_1 \cdots d_n[/latex] points, again, when counted properly.

UNESCO Nomenclature: 1105
– Geometry

Type

Abstract System

Disruption

Substantial

Utilisation

Widespread Use

Precursors

  • coordinate geometry (descartes, fermat)
  • theory of polynomial equations (newton, maclaurin)
  • early concepts of projective geometry (desargues, pascal)
  • cramer’s paradox on the number of points defining a curve

Applications

  • computer graphics (calculating intersections for ray tracing)
  • robotics (solving inverse kinematics for robot arms)
  • computational geometry and cad/cam systems
  • elimination theory for solving polynomial systems
  • celestial mechanics (analyzing orbits)

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: Bézout’s theorem, intersection theory, projective plane, algebraic curve, multiplicity, degree of a curve, polynomial system, points at infinity

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi