Maison » Affine Variety

Affine Variety

1900

An affine variety is the set of points in an affine space whose coordinates are the common zeros of a finite set of polynomials. For a set of polynomials [latex]S = \{f_1, \dots, f_k\}[/latex] in a polynomial ring [latex]k[x_1, \dots, x_n][/latex], the corresponding affine variety is [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex]. It is a central object of study in classical algebraic geometry.

An affine variety is the most fundamental object in classical algebraic geometry, directly generalizing the geometric idea of a solution set to a system of equations. The polynomials are defined over a field [latex]k[/latex], which is often taken to be algebraically closed, such as the field of complex numbers [latex]\mathbb{C}[/latex], to ensure a rich supply of points. The set of all affine varieties in a given affine space [latex]k^n[/latex] forms the closed sets of a topology, known as the Zariski topology. This topology is quite different from more familiar topologies like the Euclidean topology; for instance, it is not Hausdorff.

The crucial insight is the connection between these geometric objects (varieties) and algebraic objects (ideals in a polynomial ring). Specifically, every variety [latex]V(S)[/latex] corresponds to an ideal [latex]I(V(S))[/latex], which consists of all polynomials that vanish on every point of the variety. This correspondence is made precise by Hilbert’s Nullstellensatz, which establishes a bijection between affine varieties and radical ideals in the polynomial ring [latex]k[x_1, \dots, x_n][/latex]. This dictionary between algebra and geometry allows geometric problems to be translated into the language of commutative algebra, where powerful tools can be applied, and vice versa. For example, the dimension of a variety can be defined algebraically using the Krull dimension of its coordinate ring.

UNESCO Nomenclature: 1101
– Algebra

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • analytic geometry (descartes, fermat)
  • theory of polynomial rings (hilbert, noether)
  • ideal theory (dedekind, krull)
  • elimination theory (sylvester, cayley)

Applications

  • cryptographie (elliptic curve cryptography)
  • robotique (solving inverse kinematics equations)
  • coding theory (algebraic geometry codes)
  • computer-aided geometric design (cagd)
  • statistics (algebraic statistics)

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: affine variety, polynomial equations, zero-set, algebraic set, commutative algebra, Zariski topology, ideal, classical algebraic geometry

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi