Hogar » Principal and Maximum Shear Stresses (Mohr’s Circle)

Principal and Maximum Shear Stresses (Mohr’s Circle)

1882-01-01
  • Christian Otto Mohr
Mohr's circle diagram illustrating principal and maximum shear stresses in materials science.

The principal stresses, [latex]\sigma_1[/latex] and [latex]\sigma_2[/latex], are the maximum and minimum normal stresses at a point, occurring on planes with zero shear stress. On Mohr’s circle, these correspond to the two points where the circle intersects the horizontal ([latex]\sigma_n[/latex]) axis. The maximum in-plane shear stress, [latex]\tau_{max}[/latex], is equal to the radius of the circle, [latex]R[/latex].

Identifying principal stresses and maximum shear estrés is a primary application of Mohr’s circle. The principal stresses are the eigenvalues of the stress tensor and represent the extreme values of normal stress. They are found at the intersections of the circle with the [latex]\sigma_n[/latex] axis, calculated as [latex]\sigma_{1,2} = \sigma_{avg} \pm R[/latex], where [latex]\sigma_{avg}[/latex] is the center of the circle and [latex]R[/latex] is its radius. The planes on which these stresses act are called principal planes, and they are mutually orthogonal. On Mohr’s circle, the angle [latex]2\theta_p[/latex] from the reference state to the principal state can be found using trigonometry: [latex]\tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x – \sigma_y}[/latex].

The maximum in-plane shear stress, [latex]\tau_{max}[/latex], corresponds to the highest and lowest points on the circle, with a magnitude equal to the circle’s radius, [latex]R[/latex]. The planes of maximum shear are oriented at 45 degrees to the principal planes. This is visually represented on the circle by a 90-degree rotation from the principal stress points. Understanding these maximum values is critical in engineering design, as material failure, particularly in ductile materials, is often initiated by shear stress. Failure theories, such as the Tresca (Maximum Shear Stress) criterion, directly use this value to predict the onset of yielding.

UNESCO Nomenclature: 3328
– Materials science and engineering

Tipo

Sistema abstracto

Disrupción

Sustancial

Utilización

Uso generalizado

Precursores

  • Rankine’s theory of earth pressure
  • Cauchy’s stress tensor
  • Navier’s equations of motion for elastic solids
  • The concept of eigenvalues and eigenvectors in linear algebra

Aplicaciones

  • failure analysis of materials (e.g., tresca and von mises yield criteria)
  • design of pressure vessels and pipes
  • structural analysis of bridges and buildings
  • geotechnical engineering for slope stability analysis

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: principal stress, maximum shear stress, Mohr’s circle, stress analysis, failure criteria, Tresca criterion, solid mecánica, material science, structural design, normal stress.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar