Hogar » Riemannian Geometry

Riemannian Geometry

1854
  • Bernhard Riemann

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds—smooth manifolds equipped with a Riemannian metric. This metric is a collection of inner products on the tangent spaces, varying smoothly from point to point. It allows for the definition of local geometric notions like angle, length of curves, surface area, and volume, leading to a generalized notion of curvature.

Riemannian geometry, introduced in Bernhard Riemann’s 1854 lecture “On the Hypotheses which lie at the Bases of Geometry,” generalizes Gauss’s theory of surfaces to any number of dimensions. The key object is a Riemannian manifold, which is a differentiable manifold where each tangent space [latex]T_p M[/latex] at a point [latex]p[/latex] is equipped with an inner product [latex]g_p[/latex], called the Riemannian metric. This metric must vary smoothly as [latex]p[/latex] varies over the manifold.

The metric tensor [latex]g[/latex] allows one to measure the length of tangent vectors and the angle between them. Consequently, one can define the length of a curve by integrating the length of its velocity vector. The shortest path between two points is called a geodesic, which generalizes the concept of a “straight line” to curved spaces. The deviation of geodesics from each other reveals the curvature of the manifold.

The full description of curvature in Riemannian geometry is captured by the Riemann curvature tensor, [latex]R(u, v)w[/latex]. This tensor is a multilinear map that quantifies the extent to which the covariant derivative fails to commute. It contains all the intrinsic geometric information of the manifold and generalizes the single value of Gaussian curvature for surfaces. Contractions of the Riemann tensor yield other important curvature measures like the Ricci tensor and scalar curvature, which are central to Einstein’s theory of general relativity.

UNESCO Nomenclature: 1204
– Geometry

Tipo

Abstract System

Disruption

Revolutionary

Utilización

Widespread Use

Precursors

  • Gauss’s theory of surfaces (Disquisitiones generales circa superficies curvas)
  • Non-Euclidean geometries of Lobachevsky and Bolyai
  • Development of tensor calculus by Ricci-Curbastro and Levi-Civita
  • Concept of a manifold

Aplicaciones

  • general theory of relativity (spacetime is a pseudo-riemannian manifold)
  • data science (manifold learning techniques)
  • robótica (motion planning in configuration spaces)
  • geodesy (modeling the earth’s shape)
  • computer vision (shape analysis)

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: riemannian manifold, metric tensor, tangent space, curvature, geodesic, general relativity, riemann, inner product

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar