Hogar » Túnel cuántico

Túnel cuántico

1927
  • Friedrich Hund
Microscopio de efecto túnel de barrido en un laboratorio para demostrar los principios del efecto túnel cuántico.

(generate image for illustration only)

A quantum mechanical phenomenon where a wavefunction can propagate through a potential energy barrier. Classically, a particle lacking sufficient energy to surmount a barrier would be reflected. However, due to the wave-like nature of particles, there is a non-zero probability that the particle can appear on the other side of the barrier, effectively ‘tunneling’ through it.

Quantum tunneling is a direct consequence of the Heisenberg uncertainty principle and the probabilistic nature of a particle’s location described by its wavefunction. When a particle’s wavefunction encounters a potential barrier, it does not abruptly drop to zero. Instead, it decays exponentially inside the barrier. If the barrier is thin enough, the wavefunction can have a small but non-zero amplitude on the other side. Since the probability of finding the particle is related to the square of the wavefunction’s amplitude, there is a finite probability of the particle being detected on the far side of the barrier.

The probability of tunneling decreases exponentially with the thickness of the barrier and the square root of the barrier’s height and the particle’s mass. This is why tunneling is significant for microscopic particles like electrons but negligible for macroscopic objects. For example, in nuclear fusion within the Sun, protons do not have enough thermal energy to overcome their mutual electrostatic repulsion (the Coulomb barrier). Fusion is only possible because the protons can tunnel through this barrier, allowing the strong nuclear force to bind them together. Similarly, the scanning tunneling microscope (STM) works by measuring the tunneling current of electrons between a sharp metallic tip and a sample surface, allowing for imaging with atomic resolution.

UNESCO Nomenclature: 2210
- Física cuántica

Tipo

Sistema abstracto

Disrupción

Sustancial

Utilización

Uso generalizado

Precursores

  • Schrödinger equation (1926)
  • Wave-particle duality
  • Studies of radioactivity (alpha decay)
  • Heisenberg uncertainty principle (1927)

Aplicaciones

  • scanning tunneling microscope (STM)
  • tunnel diodes in electronics
  • flash memory (floating-gate transistors)
  • nuclear fusion in stars
  • alpha decay of atomic nuclei

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: quantum tunneling, wavefunction, potential barrier, scanning tunneling microscope, nuclear fusion, alpha decay, quantum mechanics, probability.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar