Hogar » One-Way Analysis of Variance (ANOVA)

One-Way Analysis of Variance (ANOVA)

1925
  • Ronald A. Fisher

One-way ANOVA is used to determine whether there are any statistically significant differences between the means of three or more independent groups. It analyzes the effect of a single categorical independent variable, known as a factor, on a continuous dependent variable. The null hypothesis states that all group means are equal, [latex]H_0: \mu_1 = \mu_2 = \dots = \mu_k[/latex].

One-way ANOVA is the simplest form of this statistical technique. It extends the two-sample t-test to situations with more than two groups, avoiding the problem of inflated Type I error that arises from performing multiple pairwise t-tests. The ‘one-way’ or ‘one-factor’ designation indicates that the groups are defined by a single categorical variable. For example, in a study comparing the effectiveness of three different diets, ‘diet type’ is the single factor. The underlying statistical model for an observation [latex]y_{ij}[/latex] (the i-th observation in the j-th group) is [latex]y_{ij} = \mu + \tau_j + \epsilon_{ij}[/latex], where [latex]\mu[/latex] is the overall grand mean, [latex]\tau_j[/latex] is the effect of being in group j, and [latex]\epsilon_{ij}[/latex] is the random error term. The analysis proceeds by calculating the F-statistic. If the F-test yields a significant result (i.e., the p-value is below a chosen significance level), it indicates that at least one group mean is different from the others. However, ANOVA does not specify which groups are different. To identify the specific differences, post-hoc tests like Tukey’s HSD or Bonferroni correction are required.

UNESCO Nomenclature: 1209
- Estadísticas

Tipo

Sistema abstracto

Disrupción

Sustancial

Utilización

Uso generalizado

Precursores

  • Student’s t-test for two independent samples
  • Concept of experimental control and randomization
  • Método of least squares

Aplicaciones

  • agriculture: comparing the yield of a crop under several different fertilizer treatments
  • medicine: evaluating the impact of various drug dosages on patient recovery time
  • education: comparing the effectiveness of different teaching methods on student test scores
  • marketing: testing if different packaging designs lead to different sales figures
  • fabricación: assessing if different production lines result in products with the same average quality metric

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: one-way ANOVA, single factor, group means, hypothesis testing, F-test, treatment effect, independent groups, experimental design, statistical significance, post-hoc tests.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar