Electromotive force (EMF) and electric potential difference (voltage) are distinct concepts, though both are measured in volts. EMF is the work per unit charge done by a non-conservative force (e.g., chemical reaction, changing magnetic field) to move charge within a source. Potential difference is the work per unit charge done by the conservative electrostatic field between two points.
EMF vs. Potential Difference
- James Clerk Maxwell
The core difference between EMF and potential difference lies in the nature of the underlying fields. The electrostatic field ([latex]\mathbf{E}_{c}[/latex]), created by static charges, is conservative. This means the work it does on a charge moving around any closed loop is zero: [latex]\oint \mathbf{E}_{c} \cdot d\mathbf{l} = 0[/latex]. The potential difference, or voltage, between two points is the line integral of this conservative field, [latex]V = -\int \mathbf{E}_{c} \cdot d\mathbf{l}[/latex]. In contrast, an EMF source generates a non-conservative field or “impressed field” ([latex]\mathbf{E}_{nc}[/latex]). This field does non-zero work on a charge around a closed loop: [latex]\mathcal{E} = \oint \mathbf{E}_{nc} \cdot d\mathbf{l} \neq 0[/latex].
In a simple DC circuit with a battery, the battery provides the EMF. Inside the battery, the non-conservative chemical forces move positive charges from the negative to the positive terminal, against the opposing conservative electrostatic field. This “uphill” journey is where the EMF does its work. Outside the battery, in the external circuit, the charges move “downhill” from the positive to the negative terminal, driven by the conservative electrostatic field. The potential drop across the external resistor is equal to the EMF minus the potential drop across the battery’s internal resistance. Thus, EMF is the cause of the sustained current, while potential difference is the measure of energy dissipated per unit charge in a part of the circuit.
Tipo
Disruption
Utilización
Precursors
- Alessandro Volta’s work on electric potential
- Georg Ohm’s law relating voltage, current, and resistance
- Gustav Kirchhoff’s circuit laws
- James Clerk Maxwell’s field equations
Aplicaciones
- circuit analysis (kirchhoff’s voltage law)
- battery design and characterization
- understanding of generators and motors
- thermoelectric device analysis
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
EMF vs. Potential Difference
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles