Electrochemical potential, [latex]\bar{\mu}_i[/latex], quantifies the total energy of a charged species `i` in a system. It combines the chemical potential, [latex]\mu_i[/latex], which accounts for concentration and intrinsic properties, with the electrostatic potential energy, [latex]z_i F \phi[/latex]. The formula is [latex]\bar{\mu}_i = \mu_i + z_i F \phi[/latex], where [latex]z_i[/latex] is the ion’s charge, [latex]F[/latex] is the Faraday constant, and [latex]phi[/latex] is the local electric potential.
The Fundamental Equation of Electrochemical Potential
- E. A. Guggenheim
The concept of electrochemical potential is a cornerstone of physical chemistry, extending the idea of chemical potential to systems involving charged species and electrical fields. The governing equation, [latex]bar{mu}_i = mu_i + z_i F phi[/latex], elegantly merges chemical and electrical driving forces into a single termodinámica quantity. The first term, [latex]mu_i[/latex], is the chemical potential, representing the energy change associated with adding a mole of species `i` to a system, considering factors like concentration, temperature, and pressure. It is the driving force for diffusion from high to low concentration.
The second term, [latex]z_i F phi[/latex], represents the molar electrostatic potential energy. Here, [latex]z_i[/latex] is the dimensionless integer charge of the ion (e.g., +2 for [latex]Ca^{2+}[/latex]), [latex]F[/latex] is the Faraday constant (approximately 96,485 C/mol), which is the charge of one mole of electrons, and [latex]phi[/latex] is the local electric potential (Galvani potential). This term quantifies the work required to move a mole of ions against the local electric field.
Fundamentally, the electrochemical potential is the partial molar Gibbs free energy of the species `i`, expressed as [latex]bar{mu}_i = (frac{partial G}{partial n_i})_{T,P,n_{jneq i}}[/latex]. This means it represents the total work that can be extracted when one mole of the species is added to the system. The difference in electrochemical potential between two points dictates the direction of spontaneous movement for that ion, encompassing both diffusion down a concentration gradient and drift along an electric field.
Tipo
Disruption
Utilización
Precursors
- josiah willard gibbs’s work on chemical potential and gibbs free energy
- michael faraday’s laws of electrolysis and the concept of the faraday constant
- walther nernst’s development of the nernst equation
- the development of classical thermodynamics and electrostatics
Aplicaciones
- batteries and fuel cells
- electroplating and corrosion science
- semiconductor physics (fermi level)
- neuroscience (nerve impulses)
- cellular bioenergetics (atp synthesis)
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
The Fundamental Equation of Electrochemical Potential
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles