Interpolation is the computational process within a CNC controller that generates a sequence of intermediate coordinate points to create a smooth path between programmed endpoints. The most fundamental types are linear interpolation (G01) for straight lines and circular interpolation (G02/G03) for arcs. This allows complex profiles to be machined from simple geometric commands in the G-code program.
CNC Motion Interpolation
The interpolator is the mathematical heart of a CNC controller. Without it, a machine could only move from one absolute point to another in a disjointed, ‘point-to-point’ fashion. The interpolator enables ‘contouring’, or continuous path control, which is essential for all modern machining. When the controller reads a G-code block like ‘G01 X10 Y20’, it knows the current position (e.g., X0 Y0) and the target position. The interpolator’s job is to break down this single vector into a series of very small, discrete step commands for each axis motor (e.g., X and Y). It calculates the required velocity for each axis so that they start and stop simultaneously, resulting in a perfectly straight line between the two points. The algorithm used is often a variation of a Digital Differential Analyzer (DDA) or Bresenham’s line algorithm.
For circular interpolation (G02/G03), the calculation is more complex. The G-code provides the start point (current position), the end point, and the center of the circle (or the radius). The interpolator must then calculate a series of intermediate points that lie on the specified arc. It does this by solving the circle equation incrementally, generating coordinated velocity commands for the X and Y axes that maintain the correct tangential speed and radial distance. Advanced CNC controllers feature higher-order interpolation, such as helical (combining circular motion with linear motion in a third axis), spline, or NURBS (Non-Uniform Rational B-Spline) interpolation. NURBS interpolation is particularly powerful as it allows the machine to follow complex, free-form curves defined by a single mathematical equation, resulting in smoother motion and better surface finishes than approximating the curve with many small linear segments.
Tipo
Disrupción
Utilización
Precursores
- coordinate geometry (cartesian and polar systems)
- differential equations describing motion
- development of digital computing hardware
- numerical analysis methods like the digital differential analyzer (DDA)
Aplicaciones
- machining of curved surfaces and complex geometries
- robot arm trajectory planning
- 3d printing layer path generation
- automated welding along non-linear seams
- computer graphics for rendering smooth curves
- automated inspection and scanning paths
Patentes:
Posibles ideas innovadoras
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Invención, innovación y principios técnicos relacionados