A second-order linear hyperbolic partial differential equation that governs the propagation of various types of waves. In its simplest form, it is written as [latex]\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u[/latex], where [latex]u(\vec{x},t)[/latex] is the amplitude of the wave, [latex]c[/latex] is the wave speed, and [latex]\nabla^2[/latex] is the Laplace operator. It models phenomena like vibrating strings, sound waves, and light waves.
The Wave Equation (physics)
- Jean le Rond d’Alembert
The wave equation is the archetypal hyperbolic PDE. Unlike the heat equation, it is second-order in time, which gives rise to its oscillatory, wave-like solutions. The presence of the [latex]\frac{\partial^2 u}{\partial t^2}[/latex] term implies that acceleration is proportional to the local curvature of the function, a relationship characteristic of restorative forces like tension in a string. The constant [latex]c[/latex] represents the finite speed at which disturbances propagate through the medium.
A crucial feature of the wave equation is the principle of causality and finite propagation speed. A disturbance at a point [latex]\vec{x}_0[/latex] at time [latex]t_0[/latex] can only affect points [latex]\vec{x}[/latex] at a later time [latex]t[/latex] that are within a distance of [latex]c(t-t_0)[/latex]. This region is known as the ‘cone of influence’. Conversely, the value of the solution at [latex](\vec{x}, t)[/latex] depends only on the initial data within its ‘domain of dependence’. This contrasts sharply with the infinite propagation speed of the heat equation.
In one spatial dimension, the equation [latex]u_{tt} = c^2 u_{xx}[/latex] has a remarkably simple general solution, discovered by d’Alembert: [latex]u(x,t) = F(x-ct) + G(x+ct)[/latex]. This represents the superposition of two waves traveling in opposite directions with speed [latex]c[/latex]. The shapes of these waves, determined by the functions [latex]F[/latex] and [latex]G[/latex], are preserved as they propagate.
Typ
Disruption
Verwendung
Precursors
- newton’s laws of motion
- hooke’s law for elastic forces
- development of calculus and partial derivatives
- studies of vibrating strings by brook taylor and johann bernoulli
Anwendungen
- acoustics and audio engineering
- electromagnetism (propagation of light and radio waves)
- seismology for modeling earthquakes
- fluid dynamics for surface waves
- general relativity for gravitational waves
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
The Wave Equation (physics)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles