Heim » Riemannian Geometry

Riemannian Geometry

1854
  • Bernhard Riemann

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds—smooth manifolds equipped with a Riemannian metric. This metric is a collection of inner products on the tangent spaces, varying smoothly from point to point. It allows for the definition of local geometric notions like angle, length of curves, surface area, and volume, leading to a generalized notion of curvature.

Riemannian geometry, introduced in Bernhard Riemann’s 1854 lecture “On the Hypotheses which lie at the Bases of Geometry,” generalizes Gauss’s theory of surfaces to any number of dimensions. The key object is a Riemannian manifold, which is a differentiable manifold where each tangent space [latex]T_p M[/latex] at a point [latex]p[/latex] is equipped with an inner product [latex]g_p[/latex], called the Riemannian metric. This metric must vary smoothly as [latex]p[/latex] varies over the manifold.

The metric tensor [latex]g[/latex] allows one to measure the length of tangent vectors and the angle between them. Consequently, one can define the length of a curve by integrating the length of its velocity vector. The shortest path between two points is called a geodesic, which generalizes the concept of a “straight line” to curved spaces. The deviation of geodesics from each other reveals the curvature of the manifold.

The full description of curvature in Riemannian geometry is captured by the Riemann curvature tensor, [latex]R(u, v)w[/latex]. This tensor is a multilinear map that quantifies the extent to which the covariant derivative fails to commute. It contains all the intrinsic geometric information of the manifold and generalizes the single value of Gaussian curvature for surfaces. Contractions of the Riemann tensor yield other important curvature measures like the Ricci tensor and scalar curvature, which are central to Einstein’s theory of general relativity.

UNESCO Nomenclature: 1204
– Geometry

Typ

Abstract System

Disruption

Revolutionary

Verwendung

Widespread Use

Precursors

  • Gauss’s theory of surfaces (Disquisitiones generales circa superficies curvas)
  • Non-Euclidean geometries of Lobachevsky and Bolyai
  • Development of tensor calculus by Ricci-Curbastro and Levi-Civita
  • Concept of a manifold

Anwendungen

  • general theory of relativity (spacetime is a pseudo-riemannian manifold)
  • data science (manifold learning techniques)
  • Robotik (motion planning in configuration spaces)
  • geodesy (modeling the earth’s shape)
  • computer vision (shape analysis)

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: riemannian manifold, metric tensor, tangent space, curvature, geodesic, general relativity, riemann, inner product

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch