The Reynolds number ([latex]\text{Re}[/latex]) is a dimensionless quantity in fluid mechanics used to predict flow patterns by representing the ratio of inertial forces to viscous forces. Low Reynolds numbers characterize smooth, orderly laminar flow, while high Reynolds numbers indicate chaotic, eddy-filled turbulent flow. It is crucial for determining the dynamic behavior of a fluid and for scaling experiments.
Reynolds Number
- Osborne Reynolds
The Reynolds number is defined as [latex]\text{Re} = \frac{\rho u L}{\mu} = \frac{u L}{\nu}[/latex], where [latex]\rho[/latex] is the fluid density, [latex]u[/latex] is a characteristic velocity, [latex]L[/latex] is a characteristic linear dimension, [latex]\mu[/latex] is the dynamic viscosity, and [latex]\nu[/latex] is the kinematic viscosity. Inertial forces are related to the momentum of the fluid, which tend to cause fluid motion to persist, while viscous forces are frictional forces that tend to resist this motion and smooth out disturbances. When viscous forces dominate (low [latex]\text{Re}[/latex]), any perturbations in the flow are damped out, resulting in a smooth, layered laminar flow. Conversely, when inertial forces dominate (high [latex]\text{Re}[/latex]), small disturbances can grow and evolve into chaotic eddies and vortices, leading to turbulence.
The transition from laminar to turbulent flow is not abrupt but typically occurs over a range of Reynolds numbers. For flow in a pipe, this transition is generally observed around [latex]\text{Re} approx 2300-4000[/latex]. This transition is of immense practical importance; for example, turbulent flow in a pipe causes significantly higher frictional losses and requires more pumping power than laminar flow.
One of the most powerful applications of the Reynolds number is in the principle of dynamic similitude. If two geometrically similar flow situations have the same Reynolds number (and other relevant dimensionless numbers), their flow patterns will be dynamically similar. This allows engineers to test a small-scale model of an airplane in a wind tunnel and, by matching the Reynolds number, obtain results that accurately predict the aerodynamic forces on the full-scale aircraft.
Typ
Disruption
Verwendung
Precursors
- navier–stokes equations
- studies on viscosity by newton and poisseuille
- concept of dimensional analysis from fourier and others
- earlier observations of laminar and turbulent flow by gotthilf hagen
Anwendungen
- design of aircraft wings and ship hulls to manage turbulence
- modeling blood flow in the circulatory system
- engineering of pipelines for oil and water
- scaling fluid dynamics problems from small models to full size in wind tunnels
- mixing processes in chemical engineering
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles