The repeatability limit, [latex]r[/latex], is a critical value derived from the repeatability standard deviation ([latex]s_r[/latex]). It represents the maximum expected absolute difference between two single test results, obtained under repeatability conditions, with a 95% probability. It is commonly calculated as [latex]r = 2.8 \times s_r[/latex]. If the difference exceeds [latex]r[/latex], the results are considered suspect.
Repeatability Limit (stats)
- Internationale Organisation für Normung (ISO)
The repeatability limit provides a practical tool for judging the acceptability of two test results. Its statistical foundation lies in the properties of the normal distribution. The difference between two measurements drawn from the same normal distribution with standard deviation [latex]s_r[/latex] is also normally distributed with a mean of zero and a standard deviation of [latex]\sqrt{s_r^2 + s_r^2} = \sqrt{2}s_r[/latex]. To encompass 95% of these differences, we use a coverage factor. For a normal distribution, this factor is approximately 1.96. Therefore, the 95% limit is [latex]1.96 \times \sqrt{2} \times s_r \approx 2.77s_r[/latex], which is often rounded to [latex]2.8s_r[/latex] for simplicity in Normen like ISO 5725.
A more precise calculation uses the Student’s t-distribution, especially when [latex]s_r[/latex] is estimated from a small number of measurements. The formula becomes [latex]r = t_{(1-\alpha/2, \nu)} \times \sqrt{2} \times s_r[/latex], where [latex]t_{(1-\alpha/2, \nu)}[/latex] is the critical value from the t-distribution for a confidence level of [latex]1-\alpha[/latex] (e.g., 95%) and [latex]\nu[/latex] degrees of freedom used to estimate [latex]s_r[/latex]. In practice, if a lab runs two tests on the same sample and the difference is greater than [latex]r[/latex], it’s a signal to investigate potential issues like procedural errors, sample contamination, or instrument malfunction.
Typ
Disruption
Verwendung
Precursors
- Jerzy Neyman and Egon Pearson’s development of confidence intervals in the 1930s
- The Student’s t-distribution published by William Sealy Gosset (‘Student’) in 1908
- The ISO 5725 standard on accuracy (trueness and precision) of measurement methods and results
Anwendungen
- checking the consistency of duplicate measurements in a laboratory
- defining performance specifications for analytical instruments
- quality control charts for monitoring process stability
- regulatory compliance in pharmaceutical and environmental testing
- resolving disputes between two measurements of the same sample
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Repeatability Limit (stats)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles