Heim » The Parallel Postulate (Euclid’s 5th postulate)

The Parallel Postulate (Euclid’s 5th postulate)

-300
  • Euclid of Alexandria

Euclid’s fifth postulate, the parallel postulate, is the axiom that defines Euclidean geometry: it states that if a line intersects two other lines, and the interior angles on one side sum to less than two right angles ([latex]\alpha + \beta < 180^\circ[/latex]), then the two lines will eventually intersect on that side. This postulate guarantees a unique parallel line through a point not on a given line.

The Parallel Postulate is arguably the most influential single axiom in the history of geometry. Its perceived complexity compared to the other four led to over two millennia of attempts to prove it from them. This quest was ultimately futile, but it was not a failure. In the early 19th century, mathematicians began to consider the consequences of negating the postulate. This led to the development of two major forms of non-Euclidean geometry.

Hyperbolic geometry, developed by Lobachevsky and Bolyai, assumes that through a point not on a line, there are infinitely many lines parallel to the given line. In this geometry, the sum of angles in a triangle is less than 180 degrees. Elliptic (or Riemannian) geometry, developed by Riemann, assumes there are no parallel lines. Here, the sum of angles in a triangle is greater than 180 degrees. The surface of a sphere is a common model for elliptic geometry. The discovery that these consistent, alternative geometries could exist was a paradigm shift. It demonstrated that Euclidean geometry was not an absolute truth about physical space but one of several possible mathematical structures. This realization was crucial for the development of Albert Einstein’s theory of general relativity, which models spacetime as a curved, non-Euclidean manifold.

UNESCO Nomenclature: 1204
– Geometry

Typ

Abstract System

Disruption

Foundational

Verwendung

Widespread Use

Precursors

  • Thales’s work on geometry
  • Pythagorean mathematics
  • Plato’s emphasis on axiomatic systems
  • Earlier Greek geometric concepts of lines and angles

Anwendungen

  • urban grid planning
  • perspective drawing in art
  • computer-aided design (CAD) for mechanical parts
  • surveying and cartography
  • robotics path planning on flat surfaces

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: parallel postulate, Euclid’s fifth postulate, non-Euclidean geometry, Playfair’s axiom, hyperbolic geometry, elliptic geometry, axioms, geometry

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch