Heim » Hilbert’s Nullstellensatz (“theorem of zeros”)

Hilbert’s Nullstellensatz (“theorem of zeros”)

1893
  • David Hilbert

Hilbert’s Nullstellensatz (German for “theorem of zeros”) establishes a fundamental correspondence between geometry and algebra. It states that for an algebraically closed field [latex]k[/latex], if a polynomial [latex]p[/latex] vanishes on the zero-set of an ideal [latex]I[/latex], then some power of [latex]p[/latex] must belong to [latex]I[/latex]. Formally, [latex]I(V(I)) = \sqrt{I}[/latex], the radical of [latex]I[/latex].

The Nullstellensatz is the cornerstone that formalizes the dictionary between algebraic geometry and commutative algebra. It comes in several forms, often distinguished as ‘weak’ and ‘strong’. The weak form states that if an ideal [latex]I[/latex] in [latex]k[x_1, \dots, x_n][/latex] is not the entire ring (i.e., [latex]I \neq (1)[/latex]), then its variety [latex]V(I)[/latex] is non-empty. In other words, any non-trivial system of polynomial equations has a solution in an algebraically closed field. The strong form, as described in the summary, provides a precise algebraic characterization of the ideal of all functions vanishing on a variety.

This theorem guarantees that the geometric information contained in a variety [latex]V(I)[/latex] is perfectly captured by the algebraic information in its radical ideal [latex]\sqrt{I}[/latex]. This correspondence is inclusion-reversing: larger ideals correspond to smaller varieties. For example, maximal ideals in the polynomial ring correspond to single points in the affine space. This deep connection allows mathematicians to use algebraic techniques, such as studying prime ideals and localization, to understand geometric properties like dimension, irreducibility, and singularity of varieties. The theorem’s requirement for an algebraically closed field is essential; for instance, the polynomial [latex]x^2+1=0[/latex] has no solution over the real numbers, so [latex]V(x^2+1)[/latex] is empty, even though the ideal [latex](x^2+1)[/latex] is proper in [latex]\mathbb{R}[x][/latex].

UNESCO Nomenclature: 1101
– Algebra

Typ

Abstract System

Disruption

Revolutionary

Verwendung

Widespread Use

Precursors

  • ideal theory (Kummer, Dedekind)
  • theory of polynomial invariants (Gordan, Cayley)
  • early work on elimination theory
  • concept of algebraically closed fields (Gauss)

Anwendungen

  • provides a bijective correspondence between affine varieties and radical ideals
  • foundation for modern scheme theory
  • core tool in proofs throughout commutative algebra
  • underpins algorithms in computational algebraic geometry
  • used in control theory for polynomial systems

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: Nullstellensatz, Hilbert, ideal, radical ideal, affine variety, polynomial ring, algebraically closed field, commutative algebra

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch