The Cartesian coordinate system provides an algebraic model for Euclidean geometry. It uses one or more numbers, or coordinates, to uniquely determine the position of a point in space. In a plane, two perpendicular lines (the x-axis and y-axis) are used, allowing geometric shapes to be described by algebraic equations. This fusion of algebra and geometry is known as analytic geometry.
Cartesian Coordinate System
- René Descartes
- Pierre de Fermat
Developed in the 17th century, the Cartesian system revolutionized mathematics by creating a powerful link between the previously separate fields of geometry and algebra. A point in a two-dimensional plane is represented by an ordered pair of numbers [latex](x, y)[/latex], representing its signed distances from the y-axis and x-axis, respectively. This allows geometric concepts to be translated into algebraic language. For example, a circle with center [latex](h, k)[/latex] and radius [latex]r[/latex] can be described by the equation [latex](x-h)^2 + (y-k)^2 = r^2[/latex]. A line can be described by a linear equation like [latex]y = mx + b[/latex].
This correspondence works both ways: algebraic equations can be visualized as geometric shapes. This analytic geometry allows for the solution of geometric problems using algebraic manipulation, which is often simpler and more powerful than the purely synthetic methods of classical Greek geometry. The system extends naturally to three dimensions with a third axis (z), and to higher-dimensional spaces (n-dimensional Euclidean space, [latex]\mathbb{R}^n[/latex]), which are fundamental in fields like physics, data science, and machine learning. The Euclidean distance formula, [latex]d = \sqrt{(\Delta x)^2 + (\Delta y)^2}[/latex], is a direct application of the Pythagorean theorem within this coordinate system, solidifying its status as the standard model for Euclidean space.
Typ
Disruption
Verwendung
Precursors
- Euclidean geometry’s axioms and theorems
- The development of algebra, particularly by Persian mathematicians
- Apollonius of Perga’s work on conic sections
- The concept of latitude and longitude in cartography
Anwendungen
- all forms of modern mapping and GPS
- computer graphics, video games, and user interfaces
- data visualization and statistical plotting
- engineering and physics for modeling systems
- Robotik and machine vision
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Cartesian Coordinate System
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles