Bézout’s theorem is a fundamental statement in intersection theory. It asserts that the number of intersection points of two plane algebraic curves of degrees [latex]m[/latex] and [latex]n[/latex] is exactly [latex]mn[/latex], provided that one works in a projective plane over an algebraically closed field, counts points with multiplicity, and includes points at infinity where parallel asymptotes meet.
Bézout’s Theorem
- Étienne Bézout
Bézout’s theorem elegantly quantifies the intersection of curves. In the standard affine plane, the number of intersections can be less than [latex]mn[/latex] for several reasons. First, some solutions might have complex coordinates. Second, lines that are parallel in the affine plane can be thought of as meeting at a ‘point at infinity’; moving to the projective plane [latex]\mathbb{P}^2[/latex] systematically includes these points. Third, some intersection points might be ‘degenerate’, such as a line being tangent to a circle. In this case, the single point of tangency must be counted with a multiplicity of two for the theorem to hold. The concept of intersection multiplicity is a crucial and subtle part of the theory that makes the count exact.
For example, a parabola ([latex]y=x^2[/latex], degree 2) and a line ([latex]y=ax+b[/latex], degree 1) should intersect at [latex]2 \times 1 = 2[/latex] points. This is clear when the line cuts through the parabola. When the line is tangent, there is one point, but it has multiplicity 2. If the line doesn’t intersect the parabola in the real plane, there are two intersection points with complex coordinates. The theorem generalizes to higher dimensions, stating that [latex]n[/latex] hypersurfaces of degrees [latex]d_1, \dots, d_n[/latex] in [latex]\mathbb{P}^n[/latex] intersect in exactly [latex]d_1 \cdots d_n[/latex] points, again, when counted properly.
Typ
Disruption
Verwendung
Precursors
- coordinate geometry (descartes, fermat)
- theory of polynomial equations (newton, maclaurin)
- early concepts of projective geometry (desargues, pascal)
- cramer’s paradox on the number of points defining a curve
Anwendungen
- computer graphics (calculating intersections for ray tracing)
- robotics (solving inverse kinematics for robot arms)
- computational geometry and cad/cam systems
- elimination theory for solving polynomial systems
- celestial mechanics (analyzing orbits)
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Bézout’s Theorem
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles