Heim » Beste KI-Eingabeaufforderungen für die Elektrotechnik

Beste KI-Eingabeaufforderungen für die Elektrotechnik

KI beflügelt Elektrotechnik
KI-Aufforderungen für die Elektrotechnik
KI-gesteuerte Werkzeuge revolutionieren die Elektrotechnik, indem sie durch fortschrittliche Datenanalyse und generative Entwurfstechniken die Entwurfseffizienz, die Simulationsgenauigkeit und die vorausschauende Wartung verbessern.

Online-KI-Tools verändern die Elektrotechnik rapide, indem sie die menschlichen Fähigkeiten bei der Schaltungsentwicklung, der Systemanalyse und der Elektronik ergänzen. Herstellungund die Wartung von Stromversorgungssystemen. Diese KI-Systeme können große Mengen an Simulationsdaten, Sensormesswerten und Netzwerkverkehr verarbeiten, komplexe Anomalien oder Leistungsengpässe erkennen und neuartige Schaltungstopologien oder Steuerungsalgorithmen viel schneller als herkömmliche Methoden entwickeln. KI kann Sie beispielsweise bei der Optimierung von PCB-Layouts im Hinblick auf Signalintegrität und Herstellbarkeit unterstützen, komplexe elektromagnetische oder Leistungsflusssimulationen beschleunigen, die Eigenschaften von Halbleiterbauelementen vorhersagen und eine Vielzahl von Aufgaben automatisieren. Signalverarbeitung und Datenanalyseaufgaben.

Die nachstehenden Aufforderungen helfen beispielsweise beim generativen Entwurf von Antennen oder Filtern, beschleunigen Simulationen (SPICE, EM-Feldsimulationen, Stabilitätsanalysen von Stromversorgungssystemen), helfen bei der vorausschauenden Wartung, bei der KI Sensordaten von Leistungstransformatoren oder Netzkomponenten analysiert, um potenzielle Ausfälle vorherzusagen, was eine proaktive Wartung ermöglicht und Ausfallzeiten minimiert, helfen bei der Auswahl von Halbleitermaterialien oder optimalen Komponenten (z. B. Auswahl des besten Operationsverstärkers für bestimmte Parameter) und vieles mehr.

  • Angesichts der Server-Ressourcen und des Zeitaufwands sind die Eingabeaufforderungen selbst nur registrierten Mitgliedern vorbehalten und unten nicht sichtbar, wenn Sie nicht angemeldet sind. Sie können sich registrieren, 100% kostenlos: 

Mitgliedschaft erforderlich

Sie müssen Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Mitgliederstufen anzeigen

Sie sind bereits Mitglied? Hier einloggen

AI Aufforderung an Ethische Analyse Neues Stromgerät

Bewertet ethische Überlegungen, gesellschaftliche Konsequenzen und Umweltauswirkungen eines neuen elektrischen Geräts. Diese Aufforderung hilft Ingenieuren dabei, potenzielle Dilemmata und verantwortungsvolle Innovationspfade durch die Analyse des Lebenszyklus zu erkennen.

Ausgabe: 

				
					You are an AI assistant for Electrical Engineers specializing in ethical impact analysis.
**Objective:** Conduct a comprehensive ethical consideration and impact analysis for a new electrical power device.

**Device Information:**
- New Device Description: `{device_description}` (e.g. type of device functionality novelty performance metrics)
- Material List (CSV format): `{material_list_csv}` (Columns: MaterialName SourceToxicityRecyclability)
- Manufacturing Process Summary: `{manufacturing_process_summary}` (Key steps energy consumption waste products)

**Task:**
Generate a report in MARKDOWN format. The report MUST address the following areas:
1.  **Ethical Dilemmas:** Analyze potential ethical issues related to the device's development manufacturing use and disposal. (e.g. resource sourcing labor practices data privacy if applicable safety).
2.  **Societal Consequences:** Evaluate potential positive and negative societal impacts. (e.g. job creation skill displacement accessibility public safety quality of life).
3.  **Environmental Impact Assessment:** Detail potential environmental effects throughout the device lifecycle. (e.g. carbon footprint resource depletion pollution e-waste generation).
4.  **Recommendations for Responsible Innovation:** Propose actionable strategies to mitigate negative impacts and enhance positive contributions.

**IMPORTANT:**
- Your analysis MUST be grounded in established ethical frameworks and sustainability principles relevant to Electrical Engineering.
- Provide specific examples and justifications for your points.
- The output MUST be a well-structured MARKDOWN document.
							

AI Aufforderung an Raumvektor-PWM-Erläuterung für Wechselrichter

Erläutert die Prinzipien der Raumvektor-Pulsbreitenmodulation (SVM) für dreiphasige Wechselrichter, einschließlich Sektoridentifikation, Schaltzeitberechnung und Vergleich mit der sinusförmigen PWM (SPWM). Dies hilft Ingenieuren der Leistungselektronik beim Verständnis und der Implementierung einer fortschrittlichen Wechselrichtersteuerung. Die Ausgabe ist ein Markdown-Dokument.

Ausgabe: 

				
					Act as a University Professor of Power Electronics.
Your TASK is to provide a detailed explanation of Space Vector Pulse Width Modulation (SVM) as applied to 3-phase inverters (e.g.
 a standard 2-level
 6-switch inverter as in `{inverter_topology_if_specific}`
 or assume standard if not specified).
The explanation should focus on the `{svm_aspect_to_clarify}` (e.g.
 'Principle of space vector representation'
 'Sector identification logic'
 'Calculation of active vector switching times (Ta
 Tb
 T0)'
 'Implementation of different switching sequences'
 'Overmodulation techniques'
 'Advantages over SPWM').
Indicate if a comparison with Sinusoidal PWM (SPWM) is needed via `{comparison_with_spwm_needed_boolean}` (True/False).

**EXPLANATION OF SPACE VECTOR PWM (Markdown format):**

**1. Introduction to Inverter Control and PWM**
    *   Briefly state the role of PWM in 3-phase inverters (controlling output voltage magnitude and frequency).
    *   Introduce SVM as an advanced PWM technique.

**2. The Concept of Space Vectors** (Address if part of `{svm_aspect_to_clarify}`)
    *   **2.1. Inverter Switching States**: For a 2-level
 3-phase inverter
 there are 2^3 = 8 possible switching states (Sa
 Sb
 Sc for upper switches).
    *   **2.2. Voltage Vectors**: Each switching state corresponds to a specific set of line-to-neutral or line-to-line voltages. These can be represented as vectors in a 2D complex plane (alpha-beta stationary reference frame).
        *   Six active (non-zero) voltage vectors (V1 to V6
 forming a hexagon). Magnitude typically (2/3)Vdc.
        *   Two zero voltage vectors (V0
 V7
 all upper switches ON or all lower switches ON).
    *   **2.3. Reference Voltage Vector (`V_ref`)**: The desired output voltage (sinusoidal in steady-state) is also represented as a rotating space vector `V_ref` in the alpha-beta plane.
        *   Magnitude of `V_ref` controls output voltage amplitude.
        *   Frequency of rotation of `V_ref` controls output frequency.

**3. Principle of Space Vector Modulation**
    *   The core idea: Synthesize the rotating reference vector `V_ref` by averaging two adjacent active voltage vectors and one or both zero vectors over a switching period (Ts).
    *   This is achieved by applying these three (or two active + one zero) vectors for specific durations (Ta
 Tb
 T0) within Ts
 such that: `V_ref * Ts = V_a * Ta + V_b * Tb + V_0 * T0`
    where `Ta + Tb + T0 = Ts`.

**4. Key Steps in SVM Implementation**
    *   **4.1. Sector Identification** (Address if part of `{svm_aspect_to_clarify}`)
        *   The alpha-beta plane is divided into six 60-degree sectors by the active voltage vectors.
        *   Logic to determine which sector `V_ref` currently lies in. This typically involves transforming `V_ref` (from desired 3-phase voltages Varef
 Vbref
 Vcref) into Valpha
 Vbeta components and then using their values and angles.
    *   **4.2. Calculation of Switching Times (Ta
 Tb
 T0)** (Address if part of `{svm_aspect_to_clarify}`)
        *   Once the sector is identified
 `V_ref` is synthesized using the two active vectors forming the boundaries of that sector (e.g.
 V1 and V2 for Sector 1) and zero vectors.
        *   Derivation of formulas for Ta
 Tb
 T0 based on `V_ref` magnitude
 angle
 and Vdc. 
            Example for Sector 1 (V_ref between V1 and V2):
            `Ta = (sqrt(3) * Ts * |V_ref| / Vdc) * sin(60_degrees - theta)`
            `Tb = (sqrt(3) * Ts * |V_ref| / Vdc) * sin(theta)`
            `T0 = Ts - Ta - Tb` 
            (where `theta` is the angle of `V_ref` within the sector).
    *   **4.3. Determining Switching Sequences** (Address if part of `{svm_aspect_to_clarify}`)
        *   How to arrange the application of Va
 Vb
 V0 within Ts to minimize switching frequency
 reduce harmonics
 or balance neutral point voltage (in some topologies).
        *   Common sequences: Symmetric (e.g.
 V0-Va-Vb-V7-Vb-Va-V0) or others.
        *   Translating Ta
 Tb
 T0 into gate signals for the inverter switches (S_a
 S_b
 S_c).

**5. `{svm_aspect_to_clarify}` - Focused Explanation**
    *   Provide a detailed expansion on the specific aspect requested by the user
 using the above foundational information.
    *   Include diagrams (textual descriptions or ASCII art if helpful) or pseudo-code if explaining logic like sector identification or time calculation.

**6. Overmodulation Strategies (if part of `{svm_aspect_to_clarify}` or as advanced topic)**
    *   What happens when `|V_ref|` exceeds the hexagon boundary (linear modulation range)?
    *   Brief discussion of overmodulation region 1 (six-step operation is the limit) and techniques to smoothly transition.

**7. Comparison with Sinusoidal PWM (SPWM) (if `{comparison_with_spwm_needed_boolean}` is True)**
    *   **Advantages of SVM over SPWM**:
        *   Higher DC bus utilization (max output voltage for SVM is `Vdc/sqrt(3)` line-to-neutral
 vs. `Vdc/2` for SPWM
 so about 15% more voltage).
        *   Lower harmonic distortion for the same switching frequency (or same distortion at lower switching frequency).
        *   Better suited for digital implementation.
        *   More flexibility in optimizing switching sequences.
    *   **Disadvantages/Complexity of SVM**:
        *   More complex to understand and implement initially due to vector calculations and sector logic.

**8. Conclusion**
    *   Recap the benefits and typical application areas of SVM.

**IMPORTANT**: The explanation should be clear
 structured
 and mathematically sound where appropriate. If a specific `{inverter_topology_if_specific}` implies variations (e.g.
 multilevel SVM)
 acknowledge this
 but focus on standard 2-level unless specified.
							

AI Aufforderung an Konvertieren Elektrotechnik Papier von Englisch nach Deutsch

Bei dieser Aufforderung wird die KI gebeten, einen technischen Textauszug aus einer elektrotechnischen Forschungsarbeit vom Englischen ins Deutsche zu übersetzen, wobei alle technischen Bedeutungen und die Terminologie erhalten bleiben. Der Benutzer gibt den Text des Auszuges vor.

Ausgabe: 

				
					Translate the following electrical engineering research paper excerpt from English to German, ensuring all technical terms and jargon are accurately preserved: 
 {english_text_excerpt} 
 Provide the translated text in clear, formal German suitable for academic or professional use.
							

AI Aufforderung an Miniaturisierung von Metamaterial-Antennen erklärt

Erläutert, wie Metamaterialien (z.B. SRRs, NRI-TLs, AMCs) zur Miniaturisierung von Antennen eingesetzt werden, wobei die physikalischen Mechanismen detailliert beschrieben und Leistungsabwägungen wie Bandbreite und Effizienz diskutiert werden. Dies hilft HF-Ingenieuren, fortgeschrittene Antennendesigntechniken zu verstehen. Die Ausgabe ist eine textbasierte Erklärung.

Ausgabe: 

				
					Act as a Research Scientist in Applied Electromagnetics and RF Engineering.
Your TASK is to explain how metamaterials
 specifically focusing on `{metamaterial_type_for_focus}` (e.g.
 'Engineered Magnetic Substrates using Split-Ring Resonators (SRRs)'
 'Negative Refractive Index Transmission Line (NRI-TL) sections'
 'Artificial Magnetic Conductors (AMCs) as ground planes'
 'Zero-Order Resonators (ZORs)')
 are used to achieve miniaturization of a specific `{antenna_type_to_miniaturize}` (e.g.
 'patch antenna'
 'dipole antenna'
 'monopole antenna'
 'IFA - Inverted-F Antenna').
The explanation should emphasize the `{explanation_focus_area_csv}` (e.g.
 'Physical_mechanism_for_size_reduction
Impact_on_resonant_frequency
Bandwidth_and_Q-factor_trade-offs
Efficiency_considerations
Practical_implementation_challenges').

**EXPLANATION OF METAMATERIAL-BASED ANTENNA MINIATURIZATION:**

**1. Introduction to Antenna Miniaturization and Metamaterials:**
    *   Briefly state the need for antenna miniaturization in modern electrical engineering (e.g.
 mobile devices
 IoT
 wearables).
    *   What are metamaterials? (Artificial structures with engineered electromagnetic properties not found in nature
 e.g.
 negative permittivity/permeability
 high effective refractive index).

**2. Focus on `{metamaterial_type_for_focus}` for Miniaturizing `{antenna_type_to_miniaturize}`:**
    *   **2.1. Description of `{metamaterial_type_for_focus}`:**
        *   What is its typical structure (e.g.
 periodic arrangement of SRRs
 unit cells of series capacitors and shunt inductors for NRI-TL
 mushroom-like AMC structures)?
        *   What unique electromagnetic property does it exhibit that is leveraged for miniaturization (e.g.
 high effective permeability `mu_eff > mu_0` below SRR resonance
 left-handed behavior for NRI-TL
 in-phase reflection for AMC)?
    *   **2.2. Integration with `{antenna_type_to_miniaturize}`:**
        *   How is the `{metamaterial_type_for_focus}` typically incorporated into or near the `{antenna_type_to_miniaturize}`? (e.g.
 as a substrate material
 as a ground plane
 loaded onto the radiating element
 as part of the feed structure).

**3. Explanation of Key Aspects (`{explanation_focus_area_csv}`):**
    *   **3.1. Physical Mechanism for Size Reduction / Impact on Resonant Frequency:**
        *   Explain in detail HOW the metamaterial interaction leads to a reduction in the antenna's physical size for a given resonant frequency
 OR how it lowers the resonant frequency for a given physical size.
            *   _If `{metamaterial_type_for_focus}` is SRR-based magnetic substrate for a patch_: High `mu_eff` increases effective inductance
 `f_res ~ 1/sqrt(LC)`. Or
 it increases effective refractive index `n_eff = sqrt(eps_eff * mu_eff)`
 making electrical length `n_eff * physical_length` larger
 so physical length can be smaller.
            *   _If NRI-TL (or Composite Right/Left-Handed - CRLH TL) based_: Can achieve resonance at very low frequencies (even zero frequency for ZOR) independent of physical length due to left-handed phase characteristics
 allowing for electrically small antennas.
            *   _If AMC ground plane for a monopole/PIFA_: AMC provides in-phase reflection
 allowing antenna to be placed very close to the ground plane (e.g.
 < lambda/4)
 unlike a Perfect Electric Conductor (PEC) which requires lambda/4 spacing for image to add in phase. This reduces overall height.
    *   **3.2. Bandwidth and Q-Factor Trade-offs:**
        *   Discuss the fundamental relationship between antenna size
 Q-factor
 and bandwidth (Chu-Wheeler limit). Miniaturization often leads to higher Q and narrower bandwidth.
        *   How does the use of `{metamaterial_type_for_focus}` specifically affect the antenna's bandwidth? Are there techniques to mitigate bandwidth reduction (e.g.
 coupling multiple resonators
 using lossy metamaterials strategically)?
    *   **3.3. Efficiency Considerations:**
        *   What are the primary loss mechanisms in metamaterial-based antennas (e.g.
 conductor losses in small resonant structures of metamaterial unit cells
 dielectric losses in substrates
 radiation efficiency changes)?
        *   How does the efficiency of the miniaturized antenna compare to its conventional counterpart or other miniaturization techniques?
    *   **3.4. Practical Implementation Challenges:**
        *   Fabrication tolerances (metamaterials often require precise dimensions
 especially at higher frequencies).
        *   Sensitivity to environmental factors.
        *   Complexity of design and simulation due to intricate structures.
        *   Achieving desired metamaterial properties over a sufficient bandwidth for the antenna operation.

**4. Example Application or Illustrative Design (Conceptual):**
    *   Briefly describe a conceptual example of a `{antenna_type_to_miniaturize}` miniaturized using `{metamaterial_type_for_focus}`
 highlighting how the principles translate into a physical antenna.

**5. Conclusion:**
    *   Summarize the potential and limitations of using `{metamaterial_type_for_focus}` for antenna miniaturization in electrical engineering.

**IMPORTANT**: The explanation should be grounded in electromagnetic theory. Focus on providing physical insight rather than just stating facts. Address all areas mentioned in `{explanation_focus_area_csv}`.
							

AI Aufforderung an Vereinfachung des Elektrojargons für Nicht-Ingenieure

Diese Eingabeaufforderung weist die KI an, eine Liste elektrotechnischer Fachbegriffe und Phrasen in einfache, für Nicht-Ingenieure verständliche Erklärungen umzuwandeln. Der Benutzer gibt die Liste der Begriffe vor.

Ausgabe: 

				
					Given the following list of electrical engineering technical terms: 
 {technical_terms_list} 
 provide a JSON object where each term is a key and the value is a simple, clear explanation suitable for a non-engineer audience. Keep explanations concise and avoid technical jargon. Capitalize terms in keys.
							

AI Aufforderung an Fractional-N PLL Phasenrauschquellen Analyse

Erklärt den Ursprung und die Auswirkungen verschiedener Rauschquellen (z.B. Referenzspuren, DSM-Quantisierung, VCO-Rauschen, Ladungspumpenrauschen) in einem PLL-Synthesizer (Fractional-N Phase-Locked Loop) und wie sie zum Phasenrauschen am Ausgang beitragen. Dies hilft RF/Mixed-Signal-Ingenieuren bei der Entwicklung rauscharmer Frequenzsynthesizer. Die Ausgabe ist ein Kurzbericht.

Ausgabe: 

				
					Act as a Specialist in RFIC Design and Phase-Locked Loops.
Your TASK is to explain the origin
 characteristics
 and impact of key noise sources on the output phase noise of a Fractional-N Phase-Locked Loop (PLL) synthesizer.
Consider the general `{pll_architecture_details_text}` (e.g.
 'Typical charge-pump PLL with a multi-modulus divider and a 3rd-order Delta-Sigma Modulator (DSM) for fractional division'
 'Integer-N PLL with fractional capability via dithering' - though focus on DSM based).
Pay particular attention to the `{key_noise_source_to_focus_on}` (e.g.
 'Delta-Sigma Modulator quantization noise'
 'Charge pump current mismatch and timing errors'
 'VCO phase noise'
 'Reference input phase noise'
 'Loop filter noise')
 and its behavior across the specified `{output_frequency_range_ghz}`.

**ANALYSIS OF PLL PHASE NOISE SOURCES (Markdown format):**

**1. Introduction to Fractional-N PLLs and Phase Noise**
    *   Brief overview of Fractional-N PLL function: Synthesizing output frequencies that are non-integer multiples of the reference frequency
 enabling fine frequency resolution.
    *   Importance of low phase noise in communication systems
 ADCs/DACs
 etc. Definition of phase noise L(f_offset).
    *   Mention of the `{pll_architecture_details_text}` as the context.

**2. General Model of Noise Contributions in a PLL**
    *   Concept of noise transfer functions: How noise from each component (Reference
 PFD/CP
 Loop Filter
 VCO
 Divider/DSM) is shaped and appears at the PLL output.
    *   In-band noise (typically dominated by reference
 PFD/CP
 DSM
 loop filter) vs. out-of-band noise (typically dominated by VCO). Loop bandwidth (`omega_L`) is critical.

**3. Detailed Analysis of `{key_noise_source_to_focus_on}`**
    *   **3.1. Origin and Physical Mechanism of `{key_noise_source_to_focus_on}`:**
        *   _If DSM quantization noise_: Explain how the DSM's process of approximating the fractional division ratio introduces quantization error. Shape of this noise (e.g.
 high-pass shaped by DSM order).
        *   _If Charge Pump noise_: Current mismatch between UP/DOWN pulses
 clock feedthrough
 charge sharing
 thermal noise in CP transistors. Leads to phase errors when PFD output is non-zero (even small phase error can cause CP to pulse).
        *   _If VCO phase noise_: Intrinsic oscillator noise (thermal
 flicker noise in active devices
 tank losses). Typically modeled by Leeson's formula or similar
 showing 1/f^3
 1/f^2
 and noise floor regions.
        *   _If Reference noise_: Phase noise of the crystal oscillator or other reference source.
        *   _If Loop Filter noise_: Thermal noise from resistors in the loop filter.
    *   **3.2. Characteristics and Spectral Shape of `{key_noise_source_to_focus_on}`:**
        *   How does this noise source typically appear in the frequency domain (e.g.
 flat
 1/f
 shaped)?
        *   Its dependence on PLL parameters (e.g.
 DSM order
 CP current
 VCO tank Q
 loop filter component values).
    *   **3.3. Transfer Function to Output Phase Noise:**
        *   Describe (qualitatively or with simplified equations) how the noise from `{key_noise_source_to_focus_on}` is filtered by the PLL loop dynamics to contribute to the output phase noise.
            *   Noise sources inside the loop (PFD/CP
 LF
 VCO
 DSM) are generally low-pass filtered by the closed-loop response for their contribution to output phase _within_ the loop bandwidth
 and high-pass filtered for their contribution to output phase _outside_ the loop bandwidth (VCO noise is a key example of this). No
 this is not quite right. 
            *   Reference and PFD/CP noise typically see a low-pass transfer function to the output (multiplied by N_total). 
            *   VCO noise sees a high-pass transfer function to the output.
            *   DSM noise is injected at the divider
 its transfer function to the output is complex but generally shaped by the loop; often appears as in-band noise and spurs.
    *   **3.4. Impact on Output Phase Noise across `{output_frequency_range_ghz}`:**
        *   Does the contribution of `{key_noise_source_to_focus_on}` change significantly with output frequency (e.g.
 VCO noise often degrades at higher frequencies)?
        *   How does it affect different offset frequency regions (e.g.
 close-in phase noise vs. far-out noise floor)?
    *   **3.5. Mitigation Techniques for `{key_noise_source_to_focus_on}`:**
        *   Common design techniques to reduce its impact (e.g.
 for DSM noise: higher order DSM
 careful sequence design
 increasing PFD frequency; for CP noise: current calibration
 careful layout
 larger CP currents; for VCO noise: high-Q tank
 low-noise biasing
 optimal device sizing).

**4. Interaction with Other Noise Sources**
    *   Briefly discuss how the dominance of `{key_noise_source_to_focus_on}` might change depending on the loop bandwidth choice and other component specifications.
    *   Overall PLL phase noise is the sum of contributions from all sources.

**5. Conclusion**
    *   Summarize the importance of understanding and mitigating `{key_noise_source_to_focus_on}` for achieving low-noise Fractional-N PLL performance.

**IMPORTANT**: The explanation should be technically deep yet clear. Focus on providing insight into the behavior and impact of the specified noise source. Use block diagrams conceptually if it aids explanation (describe them).
							

AI Aufforderung an Elektrotechnischer Bericht für internationales Publikum anpassen

Diese Eingabeaufforderung ermöglicht es dem Benutzer, einen technischen Bericht der Elektrotechnik an ein internationales Publikum anzupassen, indem er Einheiten, Terminologie und Stil anpasst. Der Benutzer gibt den ursprünglichen Berichtstext und die Zielregion ein.

Ausgabe: 

				
					Adapt the following electrical engineering technical report text: 
 {original_report_text} 
 to suit an international audience from the target region: 
 {target_region} 
 Convert all units to the preferred system, adjust terminology and spellings, and simplify complex sentences while preserving technical accuracy. Provide the adapted text as a continuous paragraph with clear formatting.
							

AI Aufforderung an Übersetzen PLC Ladder Logic Kommentare

Übersetzt Inline-Kommentare aus einem SPS-Kontaktplan-Programmausschnitt von einer bestimmten Ausgangssprache in eine Zielsprache, wobei der Kontext der elektrischen Steuerlogik erhalten bleibt. Dies erleichtert die internationale Zusammenarbeit und das Verständnis von Legacy-Code. Die Ausgabe ist der Codeschnipsel mit den übersetzten Kommentaren.

Ausgabe: 

				
					Act as a Bilingual Automation Engineer with expertise in PLC programming.
Your TASK is to translate the inline comments within the provided `{plc_ladder_logic_snippet_with_comments_text}` from `{source_language_code}` (e.g.
 'de' for German
 'ja' for Japanese
 'zh-CN' for Simplified Chinese) to `{target_language_code}` (e.g.
 'en' for English).
The `{plc_ladder_logic_snippet_with_comments_text}` will be a text representation of ladder logic
 where comments are clearly associated with rungs
 contacts
 coils
 or instructions.

**TRANSLATION PROCESS AND OUTPUT:**

1.  **Identify Comments**: Parse the `{plc_ladder_logic_snippet_with_comments_text}` to locate all comments. Comments might be prefixed (e.g.
 '//'
 ';'
 '#') or on separate lines clearly associated with a logic element or rung.
2.  **Contextual Translation**: For each comment:
    *   Understand its meaning in the context of the surrounding ladder logic elements (inputs
 outputs
 timers
 counters
 instructions). The comment often describes the PURPOSE or CONDITION of that part of the logic.
    *   Translate the comment from `{source_language_code}` to `{target_language_code}`
 ensuring that the technical meaning and relevance to the electrical control logic are preserved. Use appropriate technical terminology in the target language.
    *   AVOID literal translations that might be grammatically correct but technically ambiguous or misleading in an electrical engineering context.
3.  **Reconstruct Snippet**: Reconstruct the ladder logic snippet
 replacing the original comments with their translated versions. The structure and logic of the ladder diagram itself MUST remain UNCHANGED.

**Output Format:**
The output MUST be the complete `{plc_ladder_logic_snippet_with_comments_text}` with all original comments translated into the `{target_language_code}`
 in plain text.

**Example Input (`{plc_ladder_logic_snippet_with_comments_text}`
 with German comments
 `{source_language_code}`='de'
 `{target_language_code}`='en'):**
`RUNG 001
|--| |----|/|----( )-- ; Sensor_Eingang_Aktiv
|  X001   X002    Y001   ; Motor_Starten_wenn_Schutz_OK
|                               ; UND_Sensor_Aktiv
`

**Example Output (Translated to English):**
`RUNG 001
|--| |----|/|----( )-- ; Sensor_Input_Active
|  X001   X002    Y001   ; Start_Motor_if_Safety_Guard_OK
|                               ; AND_Sensor_Active
`

**IMPORTANT**: The accuracy of the technical translation of the comments is paramount. The ladder logic code itself should not be altered. If the input format of comments is complex (e.g.
 multi-line comments spanning specific blocks)
 maintain that structure in the output.
							

AI Aufforderung an Zusammenfassung der neuesten Forschungstrends in der Elektrotechnik

Diese Eingabeaufforderung leitet die KI an, die neuesten Forschungstrends zu einem bestimmten Thema der Elektrotechnik anhand aktueller akademischer Datenbanken oder ihrer Wissensdatenbank zusammenzufassen. Der Benutzer gibt das Forschungsthema und optional einen Datumsbereich ein.

Ausgabe: 

				
					Using the research topic: 
 {research_topic} 
 and the date range: 
 {date_range} 
 please summarize the latest research trends in electrical engineering. Include key breakthroughs, emerging technologies, and dominant research themes. Format the summary in markdown with headings, bullet points, and references to seminal papers if possible.
							

AI Aufforderung an Identifizierung von Wissenslücken in der elektrotechnischen Literatur

Diese Abfrage hilft bei der Ermittlung von Wissenslücken in der Fachliteratur der Elektrotechnik zu einem bestimmten Thema. Der Benutzer gibt das Thema und optional Schlüsselartikel oder Schlüsselwörter ein.

Ausgabe: 

				
					For the electrical engineering topic: 
 {topic} 
 and considering the following key papers or keywords: 
 {key_papers_or_keywords} 
 analyze existing literature to identify knowledge gaps, underexplored areas, and opportunities for future research. Provide a structured text report with sections for each gap identified and supporting rationale.
							
Inhaltsverzeichnis
    Aggiungi un'intestazione per iniziare a generare il sommario

    AVAILABLE FOR NEW CHALLENGES
    Maschinenbauingenieur, Projekt- oder F&E-Manager
    Effektive Produktentwicklung

    Available for a new challenge on short notice.
    Kontaktieren Sie mich auf LinkedIn
    Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

    Wir suchen einen neuen Sponsor

     

    Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
    > Senden Sie uns eine Nachricht <

    Erhalten Sie alle neuen Artikel
    Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

    oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

    Behandelte Themen: Testaufforderungen, Validierung, Benutzereingabe, Datenerfassung, Feedback-Mechanismus, interaktives Testen, Umfrage-Design, Usability-Testing, Software-Evaluierung, experimentelles Design, Leistungsbewertung, Fragebogen, ISO 9241, ISO 25010, ISO 20282, ISO 13407 und ISO 26362.

    1. Megan Clay

      Hängt die Wirksamkeit der KI bei der Erstellung von Aufforderungen weitgehend von der Qualität der Eingabedaten ab?

    2. Lance

      auch technische Projekte? Auch darüber sollten wir diskutieren.

      1. Fabrice

        KI ist keine magische Allheilmittel-Lösung!

    Kommentar verfassen

    Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

    Verwandte Artikel

    Nach oben scrollen

    Das gefällt dir vielleicht auch