A primary source of electromotive force is electromagnetic induction, described by Faraday’s law. It states that a time-varying magnetic flux [latex]\Phi_B[/latex] through a circuit loop induces an EMF ([latex]\mathcal{E}[/latex]). The magnitude of the EMF is proportional to the rate of change of the flux, given by the equation [latex]\mathcal{E} = – \frac{d\Phi_B}{dt}[/latex]. This principle is the foundation for electric generators, transformers, and inductors.
EMF from Faraday’s Law of Induction
- Michael Faraday
Faraday’s law of induction reveals a deep connection between electricity and magnetism. It describes how a changing magnetic environment can create an electric field. This induced electric field is non-conservative, meaning its line integral around a closed path is non-zero, and this integral is precisely the induced EMF. The mathematical formulation, one of Maxwell’s equations, is [latex]\oint_C \mathbf{E} \cdot d\mathbf{l} = – \frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{A}[/latex], where [latex]\mathbf{E}[/latex] is the induced electric field, [latex]\mathbf{B}[/latex] is the magnetic field, and the integral is taken over a closed loop [latex]C[/latex] bounding a surface [latex]S[/latex]. The negative sign, formalized by Lenz’s Law, indicates that the induced EMF creates a current whose magnetic field opposes the original change in magnetic flux, a manifestation of the conservation of energy.
This phenomenon can be produced in two ways: by changing the magnetic field strength over time (e.g., in a transformer) or by moving the circuit loop through a non-uniform magnetic field or changing its orientation (e.g., in a generator). The ability to generate a voltage and drive a current without a direct chemical source was a revolutionary discovery. It enabled the conversion of mechanical energy into electrical energy on a large scale, paving the way for the modern electrical grid and the widespread use of electricity. Every time we use electricity from a wall outlet, we are relying on EMF generated according to Faraday’s law in a power plant’s generator.
类型
Disruption
使用方法
Precursors
- Hans Christian Ørsted’s discovery that electric currents create magnetic fields
- André-Marie Ampère’s formulation of the law of force between currents
- Development of the galvanometer for detecting electric currents
应用
- electric generators
- transformers
- induction motors
- induction cooktops
- magnetic card readers
- dynamic microphones
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Historical Context
EMF from Faraday’s Law of Induction
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles