» CRISPR基因座

CRISPR基因座

1987
  • Yoshizumi Ishino
Molecular biologist analyzing CRISPR loci data on a computer in a laboratory.

CRISPR, an 首字母缩略词 for Clustered Regularly Interspaced Short Palindromic Repeats, was first observed in the E. coli genome in 1987. These genetic loci consist of short, repeated DNA sequences separated by unique ‘spacer’ sequences derived from foreign genetic elements. Initially termed SRSR, their biological function was unknown, but their unique structure suggested an important, albeit mysterious, role within prokaryotic genomes.

The initial discovery of what would later be named CRISPR was an incidental finding during the sequencing of the IAP gene in Escherichia coli. Researchers 引领 by Yoshizumi Ishino at Osaka University noticed an unusual series of 29-nucleotide repeats, partially palindromic, arranged in a cluster. These repeats were separated by non-repetitive, unique sequences of 32 nucleotides, which were later termed ‘spacers’. This peculiar structure was unlike anything previously described in bacterial genomes. At the time, DNA sequencing was a laborious process, and the function of these repeats was a complete mystery. The authors noted the structure in their 发布 but could not assign a biological role to it.

Similar structures were subsequently identified in a wide range of other bacteria and archaea, indicating that this was a widespread feature of prokaryotic genomes. The consistent structure—alternating repeats and spacers—and the conservation of the repeat sequences within a given species suggested a functional importance. The palindromic nature of the repeats hinted at the potential for forming secondary structures like hairpins in RNA transcripts, a common feature in regulatory elements. However, it was the unique nature of the spacer sequences that held the key to CRISPR’s function, a puzzle that would not be solved for over a decade. This foundational, observational discovery laid the essential groundwork for all subsequent research into the CRISPR-Cas system’s role in adaptive immunity and its eventual application in biotechnology.

UNESCO Nomenclature: 2417
– Molecular biology

类型

Biological Discovery

中断

递增

使用方法

广泛使用

前体

  • DNA双螺旋结构的发现
  • 桑格测序技术的发展,用于读取 DNA 序列
  • 分子克隆技术的进展
  • 对细菌遗传学和基因组组织的基本了解

应用

  • 细菌菌株的系统发育分析
  • bacterial 压力 typing
  • 有助于理解原核生物适应性免疫的基础性发现
  • CRISPR-cas基因编辑技术发展的基础

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: CRISPR, repeats, spacers, e. coli, Yoshizumi Ishino, molecular genetics, prokaryotic genome, DNA sequencing, palindromic repeats, SRSR.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢