» Acoustic Impedance in Ultrasonic Reflection

Acoustic Impedance in Ultrasonic Reflection

1920
Scientist performing ultrasonic testing to measure acoustic impedance in a laboratory.

声学 impedance ([latex]Z[/latex]) is a material’s intrinsic resistance to acoustic flow, defined as its density ([latex]\rho[/latex]) multiplied by its acoustic velocity ([latex]c[/latex]), so [latex]Z = \rho c[/latex]. The percentage of ultrasonic energy reflected at the boundary between two materials is governed by the difference, or mismatch, in their respective acoustic impedances. This principle is what makes flaw detection possible.

The concept of acoustic impedance is analogous to electrical impedance in circuits and is fundamental to understanding how ultrasonic waves interact with materials. When a wave traveling through a material (Material 1) encounters an interface with a second material (Material 2), part of the wave is reflected and part is transmitted. The amount of reflection is quantified by the reflection coefficient ([latex]R[/latex]), which depends on the acoustic impedances of the two materials, [latex]Z_1[/latex] and [latex]Z_2[/latex].

For a wave at normal incidence, the pressure reflection coefficient is given by [latex]R = (Z_2 – Z_1) / (Z_2 + Z_1)[/latex]. The intensity of the reflected wave, which is what is typically measured, is proportional to the square of this value. A large mismatch in impedance, such as between steel ([latex]Z approx 45 times 10^6[/latex] Pa·s/m) and air ([latex]Z approx 415[/latex] Pa·s/m), results in a very high reflection coefficient (nearly 100%). This is why internal cracks and voids, which are filled with air or gas, are so easily detectable with ultrasound; they act as near-perfect reflectors.

Conversely, if two materials have very similar acoustic impedances, most of the sound energy will pass through the interface with minimal reflection. This principle is exploited in the design of ultrasonic couplants (gels or liquids used between the transducer and the test piece) and transducer matching layers, which are designed to have an impedance intermediate between the transducer element and the test material to maximize energy transmission and improve signal quality.

UNESCO Nomenclature: 3301
– Acoustics

类型

Physical Principle

中断

基础

使用方法

广泛使用

前体

  • Lord Rayleigh’s foundational work on wave theory and acoustics (‘The Theory of Sound’)
  • studies of sound propagation in solids and fluids by 19th-century physicists
  • development of continuum 力学 to describe material properties
  • early sonar research which required understanding of acoustic reflection from objects

应用

  • non-destructive testing for detecting cracks (metal-air interface)
  • medical imaging for distinguishing between different tissues and organs
  • design of acoustic matching layers for transducers to improve energy transmission
  • geophysical prospecting using seismic reflection to map subsurface geology
  • ultrasonic cleaning systems design

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: acoustic impedance, reflection coefficient, ultrasonic testing, NDT, material property, density, acoustic velocity, interface, mismatch, wave physics.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢