» Hollomon Equation for Strain Hardening

Hollomon Equation for Strain Hardening

1945-01-01
  • John H. Hollomon, Jr.
Researcher analyzing the Hollomon equation in a materials science lab for plastic deformation modeling.

The Hollomon equation is an empirical power-law relationship that describes the portion of the true stress-true strain curve between the onset of plastic deformation (yielding) and the onset of necking (UTS). The equation is [latex]\sigma_t = K \epsilon_t^n[/latex], where [latex]\sigma_t[/latex] is the true stress, [latex]\epsilon_t[/latex] is the true plastic strain, K is the strength coefficient, and n is the strain-hardening exponent.

The Hollomon equation provides a simple yet effective mathematical model for the phenomenon of strain hardening (or work hardening), where a ductile material becomes stronger and harder as it is plastically deformed. The strain-hardening exponent, ‘n’, is a key material property derived from this equation. It typically ranges from 0 (for a perfectly plastic solid) to 1. A higher ‘n’ value indicates a greater capacity for strain hardening. For many metals, ‘n’ is numerically equal to the true strain at the point of ultimate tensile strength. The strength coefficient, ‘K’, represents the true stress at a true strain of 1.0. This equation is valid only in the plastic region, after yielding and before necking begins. It is determined by plotting true stress versus true strain on a log-log scale; the data in the plastic region should form a straight line. The slope of this line is ‘n’, and the intercept at [latex]\epsilon_t = 1[/latex] is ‘K’. While it is an empirical model and doesn’t capture all complexities of plastic deformation (like the Bauschinger effect), its simplicity and utility have made it a standard tool in materials science and mechanical engineering for analyzing and predicting the response of metals to plastic deformation.

UNESCO Nomenclature: 3313
– Materials science

类型

Mathematical Model

中断

实质性

使用方法

广泛使用

前体

  • concepts of true stress and true strain
  • experimental observation of work hardening in metals
  • development of logarithmic plotting techniques for data analysis
  • need for predictive models in metal forming industries

应用

  • 有限元素 analysis (FEA) for modeling plastic deformation
  • predicting material behavior in metal forming operations like deep drawing and stamping
  • characterizing the work-hardening capacity of metals
  • material model development for crash simulations
  • assessing the formability of sheet metals

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Hollomon equation, strain hardening, work hardening, true stress, true strain, plastic deformation, strength coefficient, strain-hardening exponent, metal forming, constitutive model.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢