
通过增强人类在设计、分析方面的能力,在线人工智能工具正在迅速改变机械工程、 制造业和维护。与传统方法相比,这些人工智能系统可以更快地处理海量数据、识别复杂模式并生成新的解决方案。例如,人工智能可以帮助您优化性能和可制造性设计,加速复杂的模拟,预测材料特性,并自动执行各种分析任务。
The prompts provided below will for example help on generative design, accelerate simulations (FEA/CFD), help on predictive maintenance where AI analyzes sensor data from machinery to forecast potential failures, enabling proactive servicing and minimizing downtime, help on material selection and much more.
- 优化实验设计
- 机械工程
人工智能提示 优化磨损测试协议变量
- 材料科学, 机械工业, 工艺优化, 质量控制, 统计分析, 测试方法, 摩擦学, 可穿戴技术
分析机械部件的磨损测试方案,提出减少变量数量或改进参数控制的方法,以隔离特定影响,提高测试的可重复性和可靠性。该提示有助于改进摩擦学研究的实验设置。输出结果是一个标记格式的建议列表。
输出:
- Markdown
- 不需要实时互联网
- 字段:{wear_test_protocol_description_text} (穿戴测试协议描述文本{组件材料和反面材料}{key_variables_being_investigated_list_csv}。{关键变量调查表_csv}。
Act as a Tribology Specialist with expertise in wear testing methodologies.
Your TASK is to analyze the provided `{wear_test_protocol_description_text}` for testing a component made of `{component_material_and_counterface_material}` (specify both
e.g.
'Component: Bearing Steel
Counterface: Stainless Steel 304'). The aim is to suggest improvements for reducing uncontrolled variables
isolating the effects of `{key_variables_being_investigated_list_csv}` (CSV: 'Variable_Name
Range_or_Levels')
and enhancing overall test repeatability and reliability.
**RECOMMENDATIONS FOR WEAR TESTING PROTOCOL OPTIMIZATION (MUST be Markdown format):**
**1. Review of Current Protocol and Objectives:**
* **Understanding the Protocol**: Briefly summarize the core elements of the `{wear_test_protocol_description_text}` (e.g.
'Pin-on-disk test
10N load
0.5 m/s sliding speed
1000m distance
ambient temperature
dry contact').
* **Investigated Variables**: Clarify the specific variables from `{key_variables_being_investigated_list_csv}` that the protocol aims to study (e.g.
'Effect of Load (5N
10N
15N)'
'Effect of Lubricant Type (Oil A
Oil B
Dry)').
* **Materials**: `{component_material_and_counterface_material}`.
**2. Identification of Potential Uncontrolled or Confounding Variables:**
Based on the protocol description
identify factors that might not be explicitly controlled or could interfere with isolating the effects of the `{key_variables_being_investigated_list_csv}`. Examples:
* **Environmental Factors**:
* Temperature fluctuations (ambient vs. localized heating due to friction).
* Humidity variations.
* Contamination (dust
debris from previous tests).
* **Specimen Preparation Inconsistencies**:
* Surface finish variations (initial roughness of component and counterface).
* Cleaning procedures before test.
* Specimen alignment and clamping.
* **Test Rig / Operational Factors**:
* Actual load application (static vs. dynamic components
precise load control).
* Speed fluctuations.
* Vibration from the test rig or surroundings.
* Wear debris accumulation or removal during the test.
* **Measurement Inconsistencies (for wear quantification)**:
* Method of wear measurement (mass loss
profilometry
wear scar dimensions) and its precision/repeatability.
* Timing of measurements.
**3. Recommendations for Improving Control and Isolation of Variables:**
* **For each identified potential issue
suggest specific improvements:**
* **Environmental Control**:
* `e.g.
Consider conducting tests in a temperature and humidity controlled chamber if feasible
or at least monitor and record ambient conditions.`
* `e.g.
Implement strict cleaning protocols for the test chamber and specimens between runs.`
* **Specimen Preparation Standardization**:
* `e.g.
Define and adhere to a specific surface preparation procedure (e.g.
grinding
polishing to a consistent Ra value). Verify roughness before each test.`
* `e.g.
Use standardized cleaning solvents and drying methods.`
* `e.g.
Develop a fixture or procedure for consistent alignment.`
* **Test Rig Calibration and Monitoring**:
* `e.g.
Regularly calibrate load cells
speed sensors
and environmental sensors.`
* `e.g.
Monitor key parameters like load
speed
and friction coefficient IN-SITU if possible.`
* **Wear Debris Management**:
* `e.g.
Decide on a strategy: either allow debris to accumulate naturally (if studying three-body wear is intended) or implement a method for controlled removal (e.g.
periodic cleaning
inert gas flow) if two-body abrasion is the focus. Document the choice.`
* **Standardized Wear Measurement**:
* `e.g.
Clearly define the wear measurement technique
including specific locations for profilometry scans or number of mass measurements. Calibrate measurement instruments.`
* **Isolating `{key_variables_being_investigated_list_csv}`**:
* `e.g.
When investigating 'Load'
ensure ALL other parameters (speed
environment
lubricant if any
material batch
surface prep) are kept as constant as possible across different load levels.`
* `e.g.
Use a full factorial or well-designed fractional factorial approach if multiple variables from the list are changed simultaneously to understand interactions.`
**4. Enhancing Repeatability and Reliability:**
* **Replicates**: `Perform multiple test runs (e.g.
3-5 replicates) for each unique test condition to assess variability and calculate confidence intervals.`
* **Randomization**: `Randomize the order of test runs for different conditions to minimize systematic errors related to time or drift.`
* **Reference Runs**: `Periodically run a test with a standard reference material pair under fixed conditions to check for drift in the test rig performance.`
**IMPORTANT**: The goal is to make the experimental results more attributable to the `{key_variables_being_investigated_list_csv}` by minimizing other sources of variation.
- 最适合用于通过识别和控制变量,提高磨损测试协议的可靠性和精确性,确保更好地隔离摩擦学研究中的调查效应。
- 根本原因分析
- 机械工程
人工智能提示 故障根源假设生成器
- 持续改进, 故障分析, 故障模式和影响分析(FMEA), 精益制造, 解决问题的技巧, 流程改进, 质量管理, 根本原因分析, 六西格玛
该提示指示人工智能根据用户提供的详细故障描述和观察到的症状,为机械故障事件生成可信的根本原因假设。
输出:
- 文本
- 不需要实时互联网
- 字段:{故障描述} {观察到的症状}
Analyze the following mechanical failure description: {failure_description}, along with observed symptoms: {observed_symptoms}. Generate a list of 5 plausible root cause hypotheses ranked by likelihood. For each hypothesis, provide supporting rationale and suggest diagnostic tests or inspections to confirm or rule out the cause. Format the output as a numbered list with clear headings.
- 最适合最适合初步调查和缩小故障原因范围
- 根本原因分析
- 机械工程
人工智能提示 故障树分析生成器
- 故障分析, 故障模式和影响分析(FMEA), 故障树分析 (FTA), 机械工业, 流程改进, 质量控制, 质量管理, 风险分析, 风险管理
此提示要求人工智能为给定的机械系统故障事件构建文本格式的故障树分析图。用户提供故障事件描述和涉及的部件。
输出:
- Markdown
- 不需要实时互联网
- 字段:{故障事件}{系统组件}
Construct a fault tree analysis for the mechanical failure event described as: {failure_event}. Consider the following system components: {system_components}. Present the fault tree in markdown using indentation and bullet points to represent logical AND/OR gates and failure paths. Include explanations of each branch and possible root causes. Use uppercase for failure events and lowercase for components.
- 最适合最适合可视化机械系统中的故障传播和依赖关系
- 根本原因分析
- 机械工程
人工智能提示 故障模式优先级矩阵
- 持续改进, 纠正行动, 故障分析, 故障模式和影响分析(FMEA), 流程改进, 质量控制, 质量管理, 风险分析, 风险管理
此提示要求人工智能根据 CSV 输入的故障模式、严重程度、发生率和检测评级,创建故障模式优先级矩阵。这有助于确定机械故障根本原因的优先级。
输出:
- CSV
- 不需要实时互联网
- 字段:{csv_failure_modes} 失败模式
Using the following CSV data of failure modes with columns: Failure_Mode, Severity, Occurrence, Detection: {csv_failure_modes}, calculate Risk Priority Numbers (RPN) for each mode. Sort the failure modes by decreasing RPN and generate a prioritization matrix. Output a CSV with columns: Failure_Mode, Severity, Occurrence, Detection, RPN, Priority_Rank. Provide a brief summary explaining the top 3 prioritized failure modes and recommendations for mitigation.
- 最适合最适合量化故障调查和纠正措施的优先次序
- 根本原因分析
- 机械工程
人工智能提示 根源分析报告生成器
- 持续改进, 纠正行动, 故障分析, 精益制造, 流程改进, 质量保证, 质量管理, 根本原因分析, 统计过程控制 (SPC)
此提示指示人工智能根据所提供的事件摘要、测试结果和检查结果,为机械故障事件生成详细的根本原因分析报告。它将信息综合成结构化文件。
输出:
- Markdown
- 不需要实时互联网
- 字段:{事件摘要}{检测结果}{检测发现}.{检测结果}{检测结果
Generate a comprehensive root cause analysis report for the mechanical failure incident described below. Incident Summary: {incident_summary}. Test Results: {test_results}. Inspection Findings: {inspection_findings}. Structure the report with sections: Executive Summary, Problem Description, Analysis Methodology, Root Cause Identification, Recommendations for Prevention, and Conclusion. Use markdown formatting with headings and bullet points where appropriate. Emphasize clarity, technical accuracy, and actionable insights.
- 最适合最适合制作正式、结构化的根本原因分析文档
- 伦理考虑和影响分析
- 机械工程
人工智能提示 自主机械的伦理框架
- 高级驾驶辅助系统(ADAS), 人工智能(AI), 自主车辆, 设计思维, Human-Centered Design, 风险管理, 机器人技术, 安全
生成一个设计自主机械系统的伦理考虑框架,重点关注意外情况下的安全责任和决策。该提示可帮助工程师在复杂机械的设计阶段主动应对伦理挑战。输出为结构化的标记符文档。
输出:
- Markdown
- 不需要实时互联网
- 字段:{自主系统类型}{operational_environment_description} {key_decision_making_scenarios_csv} 操作环境描述
Act as an Ethics Advisor specializing in AI and Autonomous Systems in Mechanical Engineering.
Your TASK is to generate a structured ethical framework for the development and deployment of an `{autonomous_system_type}` operating in `{operational_environment_description}`.
The framework should address key ethical principles and provide guidance for handling scenarios listed in `{key_decision_making_scenarios_csv}` (a CSV string like 'Scenario_ID
Description
Potential_Conflict
e.g. S1
Obstacle_Avoidance
Prioritize_occupant_safety_vs_pedestrian_safety').
**FRAMEWORK STRUCTURE (MUST be Markdown format):**
**1. Introduction**
* Purpose of the Ethical Framework for `{autonomous_system_type}`.
* Scope of application considering `{operational_environment_description}`.
**2. Core Ethical Principles** (Define and explain relevance for `{autonomous_system_type}`)
* **Safety & Non-Maleficence**: Minimizing harm.
* **Accountability & Responsibility**: Who is responsible in case of failure?
* **Transparency & Explainability**: How are decisions made by the system understandable?
* **Fairness & Non-Discrimination**: Avoiding bias in decision-making.
* **Privacy**: Data collection and usage.
* **Human Oversight**: Levels of human control and intervention.
**3. Guidelines for Decision-Making in Critical Scenarios**
* For EACH scenario provided in `{key_decision_making_scenarios_csv}`:
* **Scenario Analysis**: Briefly describe the ethical dilemma posed.
* **Primary Ethical Principle(s) at Stake**: Identify which of the above principles are most relevant.
* **Recommended Approach/Hierarchy**: Suggest a decision-making logic or prioritization. Clearly state any trade-offs.
* **Justification**: Explain the reasoning behind the recommended approach based on ethical principles.
**4. Design and Development Recommendations**
* Specific design considerations for `{autonomous_system_type}` to embed ethical behavior (e.g.
fail-safe mechanisms
auditable logs
bias testing).
**5. Operational and Deployment Considerations**
* Monitoring ethical performance post-deployment.
* Procedures for addressing ethical breaches or unforeseen negative consequences.
**IMPORTANT**: The framework should be actionable and provide clear guidance for engineers. The discussion of scenarios from `{key_decision_making_scenarios_csv}` is CRUCIAL.
- 最适合积极制定自主机械系统的道德准则,帮助工程师在设计和运行中做出复杂的道德决策。
- 伦理考虑和影响分析
- 机械工程
人工智能提示 生命周期环境影响评估大纲
- 循环经济, 环保制造, 环境影响, 环境影响评估, 生命周期, 生命周期评估(LCA), 可持续发展实践, 可持续发展, 可持续产品设计
概述了对新机械产品进行生命周期环境影响评估(LCA)的关键阶段和注意事项。本提示通过确定数据需求影响类别和缓解机会,帮助工程师构建 LCA 工作。结果是一份详细说明 LCA 计划的标记文件。
输出:
- Markdown
- 需要实时互联网
- 字段:{产品名称和功能} {物料清单_csv} {制造流程概览文本}{预期使用阶段和处置文本}
Act as an Environmental Engineering Consultant specializing in Lifecycle Assessments (LCA) for mechanical products.
Your TASK is to generate a structured OUTLINE for conducting a Lifecycle Environmental Impact Assessment for `{product_name_and_function}`.
Consider the product's composition from `{bill_of_materials_csv}` (CSV string: 'Material
Quantity
Source_Region_if_known')
its `{manufacturing_processes_overview_text}`
and its `{expected_use_phase_and_disposal_text}`.
You MAY use live internet to identify common impact assessment tools
databases (e.g.
Ecoinvent
GaBi)
and relevant ISO standards (e.g.
ISO 14040/14044).
**LCA OUTLINE STRUCTURE (MUST be Markdown format):**
**1. Goal and Scope Definition**
* **1.1. Purpose of the LCA**: (e.g.
Identify environmental hotspots
Compare with alternative designs
Eco-labeling).
* **1.2. Product System Description**: Define `{product_name_and_function}`.
* **1.3. Functional Unit**: Quantified performance of the product system (e.g.
'Provide X amount of torque for Y hours'
'Manufacture Z parts').
* **1.4. System Boundaries**: Detail what stages are INCLUDED and EXCLUDED (Cradle-to-Grave
Cradle-to-Gate
Gate-to-Gate). Justify exclusions.
* Raw Material Acquisition (based on `{bill_of_materials_csv}`).
* Manufacturing & Assembly (based on `{manufacturing_processes_overview_text}`).
* Distribution/Transportation.
* Use Phase (based on `{expected_use_phase_and_disposal_text}`).
* End-of-Life (Disposal/Recycling
based on `{expected_use_phase_and_disposal_text}`).
* **1.5. Allocation Procedures** (if dealing with multi-output processes or recycled content).
* **1.6. Impact Categories Selection**: (e.g.
Global Warming Potential (GWP
kg CO2 eq)
Acidification Potential
Eutrophication Potential
Ozone Depletion Potential
Smog Formation
Resource Depletion
Water Footprint). Select relevant categories for this product type.
* **1.7. LCA Methodology & Software/Databases**: (e.g.
CML
ReCiPe
TRACI. Mention common software like SimaPro
GaBi
openLCA
and databases like Ecoinvent).
**2. Life Cycle Inventory Analysis (LCI)**
* **2.1. Data Collection Plan**: For each life cycle stage:
* Identify required input data (energy
materials
water
transport) and output data (emissions
waste).
* Data sources (primary vs. secondary
from `{bill_of_materials_csv}`
literature
databases).
* **2.2. Data Quality Requirements** (e.g.
precision
completeness
representativeness).
**3. Life Cycle Impact Assessment (LCIA)**
* **3.1. Classification**: Assigning LCI results to selected impact categories.
* **3.2. Characterization**: Calculating category indicator results (e.g.
converting greenhouse gas emissions into CO2 equivalents).
* **3.3. Normalization (Optional)**: Expressing impact indicator results relative to a reference value.
* **3.4. Weighting (Optional
and to be used with caution)**: Assigning weights to different impact categories.
**4. Life Cycle Interpretation**
* **4.1. Identification of Significant Issues**: Hotspot analysis.
* **4.2. Evaluation**: Completeness
sensitivity
and consistency checks.
* **4.3. Conclusions
Limitations
and Recommendations for Mitigation** (e.g.
material substitution
process optimization
design for disassembly).
**IMPORTANT**: This outline should guide an engineer in planning a comprehensive LCA. Emphasize the iterative nature of LCA and the importance of data quality.
- 最适合用于构建机械产品生命周期环境影响评估,使工程师能够系统地评估和减轻环境足迹。
- 伦理考虑和影响分析
- 机械工程
人工智能提示 自动化的社会影响分析
- 变更管理, 工业自动化, 机械工业, 可持续发展实践
分析在机械工程领域实施特定自动化技术可能产生的社会影响,如就业转移、技能需求变化和可及性问题。这一提示有助于工程师考虑更广泛的社会后果。输出结果是一份基于文本的报告。
输出:
- 文本
- 需要实时互联网
- 字段:{自动化技术描述} {行业应用领域} {地理区域背景}
Act as a Socio-Technical Analyst specializing in the impacts of automation in engineering fields.
Your TASK is to provide an analysis of the potential societal impacts of implementing `{automation_technology_description}` within the `{industry_sector_of_application}` specifically considering the `{geographical_region_context}`.
You SHOULD use live internet access to gather data on employment trends
skill demands
and relevant socio-economic studies for the specified region and sector.
**SOCIETAL IMPACT ANALYSIS REPORT (Plain Text Format):**
**1. Introduction**
* Overview of the `{automation_technology_description}` and its intended application in the `{industry_sector_of_application}`.
* Brief note on the socio-economic context of `{geographical_region_context}` relevant to automation.
**2. Potential Impacts on Employment**
* **Job Displacement**: Analyze potential for job losses in roles directly affected by the automation. Provide any available statistics or projections for the `{industry_sector_of_application}` in `{geographical_region_context}`.
* **Job Creation**: Analyze potential for new jobs created (e.g.
maintenance of automated systems
programming
data analysis
new roles enabled by the technology).
* **Job Transformation**: How existing roles might change
requiring new skills or responsibilities.
**3. Shifts in Skill Demand**
* **Upskilling/Reskilling Needs**: Identify skills that will become more critical (e.g.
digital literacy
robotics programming
data interpretation
complex problem-solving) and skills that may become obsolete.
* **Impact on Training and Education**: Discuss potential needs for changes in vocational training and engineering curricula in `{geographical_region_context}`.
**4. Economic Impacts**
* **Productivity Gains**: Potential for increased efficiency
output
and competitiveness in the `{industry_sector_of_application}`.
* **Investment Requirements**: Capital costs associated with implementing `{automation_technology_description}`.
* **Distribution of Economic Benefits**: Discuss who is likely to benefit most (e.g.
capital owners
highly skilled labor
consumers). Consider potential for increased inequality.
**5. Accessibility and Equity**
* **Impact on Small vs. Large Businesses**: Can businesses of all sizes in `{geographical_region_context}` adopt this technology
or does it favor larger enterprises?
* **Impact on Different Demographics**: Are there specific groups (e.g.
older workers
specific genders
minority groups) that might be disproportionately affected
positively or negatively?
* **Digital Divide**: Does the technology exacerbate or mitigate the digital divide within the region?
**6. Broader Societal and Ethical Considerations**
* **Worker Well-being**: Impact on job quality
stress levels
and workplace safety.
* **Social Acceptance and Resistance**: Potential for resistance to adoption from workers or the public.
* **Long-term Regional Development**: How might widespread adoption of this technology influence the economic trajectory of `{geographical_region_context}`?
**7. Policy Recommendations / Mitigation Strategies (Brief Suggestions)**
* Proactive measures that could be taken by policymakers
industry
or educational institutions in `{geographical_region_context}` to maximize benefits and mitigate negative impacts (e.g.
retraining programs
social safety nets
investment in education).
**8. Conclusion**
* Summary of key potential societal impacts and a call for responsible implementation.
**Disclaimer**: This analysis is based on publicly available information and general trends. Specific impacts can vary based on the details of implementation.
- 最适合用于分析机械工程自动化可能带来的社会后果,如就业转移和技能需求,为负责任地采用技术提供依据。
- 伦理考虑和影响分析
- 机械工程
人工智能提示 两用技术伦理评估
- 快速成型制造, 增材制造设计(DfAM), 环境影响, 机械工业, 风险管理, 可持续发展实践
对一项可能具有双重用途的机械工程技术进行初步伦理评估,强调潜在的风险和伦理困境,并提出保障措施。该提示旨在通过考虑意外后果来促进负责任的创新。输出为结构化标记报告。
输出:
- Markdown
- 不需要实时互联网
- 字段:{技术描述和能力}{预期民用应用}{潜在误用关注点列表_csv}。{民用目标应用} {潜在误用担忧列表_csv} {技术描述和能力} {民用目标应用} {潜在误用担忧列表_csv} {技术描述和能力} {民用目标应用
Act as an Ethics Reviewer specializing in dual-use technologies in engineering.
Your TASK is to conduct a preliminary ethical assessment of the `{technology_description_and_capabilities}`
considering its `{intended_civilian_application}` and the `{potential_misuse_concerns_list_csv}` (CSV string: 'Concern_ID
Description_of_Misuse
Potential_Harm_Level_High_Medium_Low').
**ETHICAL ASSESSMENT REPORT (MUST be Markdown format):**
**1. Technology Overview**
* Description of `{technology_description_and_capabilities}`.
* Stated `{intended_civilian_application}` and its potential benefits.
**2. Identification of Dual-Use Potential**
* Analysis of how the core capabilities of the technology could be diverted for harmful or unintended military/security purposes
drawing from `{potential_misuse_concerns_list_csv}`.
* For each concern in `{potential_misuse_concerns_list_csv}`
elaborate on the pathway from civilian application to potential misuse.
**3. Ethical Dilemmas and Concerns**
* **Responsibility of Innovators/Engineers**: Discuss the ethical obligations of those developing such technologies.
* **Risk of Unintended Escalation**: How could the technology contribute to instability or an arms race if misused?
* **Accessibility and Proliferation**: How easily could the technology or knowledge to replicate it spread to actors with malicious intent?
* **Difficulty in Control/Verification**: Once developed
how hard is it to monitor or control its use or prevent its misuse?
* **Impact on Human Rights**: Potential for the technology to be used in ways that violate human rights (e.g.
surveillance
autonomous weapons if applicable).
**4. Assessment of Potential Harms (based on `{potential_misuse_concerns_list_csv}`)**
* Summarize the potential severity and nature of harms associated with the identified misuses.
**5. Proposed Safeguards and Mitigation Strategies**
* **Technical Safeguards**: Are there ways to design the technology to make misuse more difficult (e.g.
built-in limitations
usage restrictions
tamper-proofing
tracking mechanisms)?
* **Policy and Regulatory Safeguards**: Suggestions for governance frameworks
export controls
international treaties
or ethical oversight bodies that could mitigate risks.
* **Transparency and Open Dialogue**: Importance of public discussion and engagement with policymakers and ethicists throughout the technology's lifecycle.
* **End-User Vetting and Agreements**: Potential for controlling distribution to responsible parties.
**6. Conclusion and Recommendation**
* Summarize the key ethical risks associated with the dual-use potential of `{technology_description_and_capabilities}`.
* Provide a concluding thought on whether development should proceed
and if so
under what ethical conditions or with what mandatory safeguards.
* Suggest if a more comprehensive ethical review by a dedicated committee is warranted.
**IMPORTANT**: This is a PRELIMINARY assessment. The aim is to raise awareness and stimulate deeper ethical reflection
not to provide a definitive judgment. Focus on balancing innovation with responsibility.
- 最适合评估双重用途机械技术的道德风险和滥用潜力,指导工程师进行负责任的创新,并提出保障措施。
- 优化实验设计
- 机械工程
人工智能提示 实验计划批评与改进建议
- 设计分析, 设计评估, 优化设计, 流程改进, 质量保证, 质量控制, 统计分析, 验证
本提示要求人工智能分析所提供的机械工程实验设计,找出不足之处并提出详细的改进建议,以提高有效性、可靠性和效率。用户输入实验计划描述和关键变量。
输出:
- 文本
- 不需要实时互联网
- 字段:{实验计划}{关键变量}
Critically analyze the following mechanical engineering experimental plan: {experimental_plan}. Consider the key variables: {key_variables}. Identify potential flaws or limitations in design, controls, sample size, measurement methods, and data collection. Suggest specific improvements or alternative approaches to increase validity, reliability, and efficiency. Present your analysis in a numbered list with clear rationale for each suggestion.
- 最适合最适合优化实验设置,以获得更可靠、更有效的结果
我们是否假设人工智能总能生成机械工程方面的最佳提示?这些提示是如何生成的?
人工智能会让人类工程师变得多余吗?
相关文章
产品设计中的生命周期评估(LCA)
产品价值分析概述
工作站人体工程学评估
工程变更单 (ECO):最大限度地减少中断和成本的最佳实践
从实验室到市场:试生产的作用
45+ 游戏和营销的认知科学技巧:心理和参与度