Casa » I sette ponti di Königsberg

I sette ponti di Königsberg

1736
  • Leonhard Euler
Mappa del problema del ponte di Königsberg che illustra le basi della teoria dei grafi di Eulero.

(generate image for illustration only)

Si tratta di un problema storicamente notevole in matematica. La sua risoluzione negativa da parte di Leonhard Euler nel 1736 ha posto le basi della teoria dei grafi e ha prefigurato l'idea di topologia. Il problema chiedeva se i sette ponti della città di Königsberg potessero essere attraversati tutti in un solo viaggio senza tornare indietro, e se il viaggio terminasse sulla stessa terraferma da cui era partito.

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River and included two large islands which were connected to each other, and to the mainland, by seven bridges. The problem was to find a walk through the city that would cross each of those bridges once and only once. Euler’s insight was to abstract the problem by stripping away all features except the land masses and the bridges connecting them. He represented each of the four land masses as a point (a vertex) and each bridge as a line (an edge) connecting the vertices. The resulting mathematical structure is a graph. Euler realized that a path traversing each edge exactly once (an Eulerian path) is possible only if the graph is connected and has zero or two vertices of odd degree (degree being the number of edges connected to a vertex). The Königsberg graph had four vertices, all of which had an odd degree (one with degree 5, and three with degree 3). Therefore, Euler proved that such a path was impossible. This solution is considered the first theorem of graph theory and one of the first results in topology, as it does not depend on measurements or specific geometry, but only on the connectivity of the graph.

UNESCO Nomenclature: 1203
- Geometria

Tipo

Sistema astratto

Interruzione

Fondamento

Utilizzo

Uso diffuso

Precursori

  • Basic concepts of geometry from Euclid
  • Early combinatorial problems and recreational mathematics

Applicazioni

  • network routing (e.g., internet traffic, logistics)
  • circuit design
  • genome sequencing
  • operations research
  • social network analysis

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: Königsberg, Euler, graph theory, Eulerian path, vertex, edge, topology, network analysis.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Contesto storico

(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti