Casa » Schrödinger Equation

Schrödinger Equation

1926
  • Erwin Schrödinger

This is a fundamental equation in quantum mechanics that describes how the quantum state of a physical system changes over time. It is a linear partial differential equation for the wavefunction, [latex]\Psi(x, t)[/latex]. The time-dependent version is [latex]i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi[/latex], where [latex]\hat{H}[/latex] is the Hamiltonian operator, representing the total energy of the system.

The Schrödinger equation is the quantum mechanical counterpart to Newton’s second law in classical meccanica. While Newton’s law predicts the trajectory of a particle, the Schrödinger equation predicts the future behavior of a system’s wavefunction. The wavefunction, [latex]\Psi[/latex], is a complex-valued probability amplitude, and the square of its magnitude, [latex]|\Psi|^2[/latex], gives the probability density of finding the particle at a given position and time. The equation comes in two main forms: time-dependent and time-independent.

The time-dependent Schrödinger equation (TDSE), [latex]i\hbar\frac{\partial}{\partial t}\Psi(x, t) = \hat{H}\Psi(x, t)[/latex], describes a system evolving in time. The time-independent Schrödinger equation (TISE), [latex]\hat{H}\Psi(x) = E\Psi(x)[/latex], is used for systems in a stationary state, where the energy [latex]E[/latex] is constant. Solving the TISE for a given potential yields the allowed energy eigenvalues ([latex]E[/latex]) and the corresponding energy eigenfunctions ([latex]\Psi[/latex]), which represent the stable states of the system, such as the electron orbitals in an atom. The Hamiltonian operator [latex]\hat{H}[/latex] is constructed from the classical expression for the total energy (kinetic plus potential) by replacing classical variables with their corresponding quantum operators. For a single non-relativistic particle, [latex]\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(x, t)[/latex].

UNESCO Nomenclature: 2210
– Quantum Physics

Tipo

Abstract System

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • Hamiltonian mechanics (1833)
  • De Broglie’s wave-particle duality hypothesis (1924)
  • Matrix mechanics (Heisenberg, 1925)
  • Classical wave equations

Applicazioni

  • predicting atomic and molecular orbitals (quantum chemistry)
  • designing semiconductor devices
  • modeling nuclear reactions
  • understanding superconductivity
  • quantum computing algorithm design

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: Schrödinger equation, wavefunction, Hamiltonian operator, quantum state, partial differential equation, quantum mechanics, probability amplitude, energy levels

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti