Protein denaturation is the process in which a protein loses its native three-dimensional structure. This disruption of secondary, tertiary, and quaternary structures is caused by external stressors such as heat, extreme pH, organic solvents, or radiation. While the primary sequence of amino acids remains intact, the loss of shape results in the loss of the protein’s biological function.
Protein Denaturation
Denaturation disrupts the weak, non-covalent interactions that stabilize a protein’s native conformation. These include hydrogen bonds, hydrophobic interactions, and ionic bonds. For example, heat increases the kinetic energy of atoms, causing vibrations that break these weak bonds. Extreme pH alters the protonation state of acidic and basic amino acid side chains, disrupting salt bridges and hydrogen bonds. Organic solvents can disrupt the hydrophobic core that is crucial for the stability of many globular proteins. In some cases, denaturation is reversible; if the denaturing agent is removed and conditions are returned to physiological norme, some proteins can spontaneously refold into their native state, a process called renaturation, as demonstrated in Anfinsen’s experiments. However, for many proteins, especially large ones, denaturation is irreversible, often leading to aggregation where the unfolded hydrophobic regions stick together non-specifically. This aggregation is a hallmark of several neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease.
Understanding denaturation is critical in both biology and biotechnology. It explains why organisms must maintain a stable internal environment (homeostasis) and is a key consideration in the purification, storage, and handling of protein-based drugs and enzymes to maintain their activity.
Tipo
Interruzione
Utilizzo
Precursori
- observation of food cooking and coagulation (e.g., egg whites)
- early studies on protein solubility by hofmeister and others
- development of the concept of a specific 3d protein structure
- understanding of non-covalent interactions like hydrogen bonds and hydrophobic effects
Applicazioni
- cooking food (e.g., frying an egg, where heat denatures albumin)
- sterilization of medical equipment using heat or chemicals to denature microbial proteins
- use of alcohol as a disinfectant, which denatures bacterial proteins
- permanent hair waving, which uses chemicals to break and reform disulfide bonds in keratin
- biochemical assays that use denaturing agents (e.g., sds-page) to analyze proteins by mass
Brevetti:
Potenziali idee innovative
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Principi di invenzione, innovazione e tecnica correlati