Casa » Overpotential (chemistry)

Overpotential (chemistry)

1910
  • Julius Tafel

Overpotential is the potential difference (voltage) between a half-reaction’s thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. It represents the extra energy required to overcome activation barriers for the electrode reaction to proceed at a significant rate. It is a key factor in the energy efficiency of all electrolytic processes.

In an ideal electrolytic cell, the applied voltage needed to drive a reaction would be exactly equal to the cell’s standard electrode potential ([latex]E^0_{cell}[/latex]). However, in reality, a significantly higher voltage is almost always required. This excess voltage is the overpotential ([latex]\eta[/latex]). The total cell potential ([latex]E_{cell}[/latex]) is the sum of the equilibrium potential, the overpotentials at both electrodes, and the ohmic drop (IR drop) across the electrolyte: [latex]E_{cell} = E^0_{cell} + \eta_{anode} + \eta_{cathode} + IR_{drop}[/latex].

Overpotential arises from several sources. Activation overpotential is related to the kinetics of the electron transfer step at the electrode surface itself. Some reactions, like the evolution of hydrogen or oxygen gas, have inherently slow kinetics and require a large activation overpotential. Concentration overpotential occurs when the concentration of reactants at the electrode surface differs from the bulk concentration due to slow diffusion. Resistance overpotential is caused by the resistance of the electrolyte or films on the electrode surface.

The relationship between current density (j) and activation overpotential is often described by the Tafel equation: [latex]\eta = a + b \log(j)[/latex], where ‘a’ and ‘b’ are constants (Tafel parameters) specific to the electrode reaction and material. This equation shows that to get a higher reaction rate (higher current density), a larger overpotential is required. The primary goal in designing efficient electrochemical systems is to minimize overpotential, which is typically achieved by using electrocatalysts (materials that lower the activation energy), increasing the operating temperature, or optimizing the electrode structure to enhance mass transport.

UNESCO Nomenclature: 2406
– Electrochemistry

Tipo

Physical Phenomenon

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • Nernst equation describing equilibrium electrode potentials
  • Arrhenius equation relating reaction rate to activation energy
  • development of the concept of chemical kinetics
  • Faraday’s laws of electrolysis

Applicazioni

  • designing efficient industrial electrolyzers (e.g., for hydrogen production)
  • developing better catalysts to reduce energy loss in fuel cells
  • understanding and preventing corrosion
  • improving the performance of batteries during charging
  • optimizing electroplating processes for uniform coatings

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: overpotential, electrolysis, electrochemistry, Tafel equation, activation energy, voltage efficiency, electrocatalysis, current density

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti