Casa » Neutron Radiation Embrittlement

Neutron Radiation Embrittlement

1950

Neutron embrittlement is the loss of ductility and toughness in materials subjected to neutron irradiation. In nuclear reactors, high-energy neutrons displace atoms from their lattice sites, creating defects like vacancies and interstitials. These defects accumulate and form clusters that impede dislocation motion, thereby increasing the material’s hardness and strength but severely reducing its ability to deform plastically before fracturing.

A critical consequence of neutron embrittlement is the upward shift in the ductile-to-brittle transition temperature (DBTT). The DBTT is the temperature below which a material behaves in a brittle manner and above which it is ductile. For reactor pressure vessels, typically made of ferritic steel, this shift means the vessel could become brittle at its normal operating temperatures, posing a significant safety risk, particularly during shutdown or startup thermal cycles. The amount of DBTT shift is a function of neutron fluence (total neutrons per unit area), neutron energy spectrum, irradiation temperature, and material composition (e.g., copper and nickel content can accelerate embrittlement).

The novelty of this discovery was profound, as it introduced a new degradation mechanism that was not based on chemical corrosion or mechanical fatigue but on subatomic particle interactions. Understanding and quantifying this effect became a cornerstone of nuclear engineering and safety. To manage it, nuclear plants run surveillance programs where samples of the RPV material are placed inside the reactor, periodically removed, and tested to track the progression of embrittlement, ensuring the vessel remains within safe operating limits throughout its life.

UNESCO Nomenclature: 3308
– Materials science

Tipo

Processo fisico

Interruzione

Fondamento

Utilizzo

Uso diffuso

Precursori

  • discovery of the neutron by james chadwick
  • development of the first nuclear reactor (chicago pile-1)
  • eugene wigner’s prediction of radiation damage in solids (wigner effect)
  • advances in electron microscopy to visualize crystal lattice defects
  • development of fracture mechanics by a. a. griffith

Applicazioni

  • lifetime assessment and extension programs for nuclear reactor pressure vessels (rpvs)
  • development of radiation-resistant alloys for next-generation fission and fusion reactors
  • material surveillance programs in nuclear facilities to monitor degradation
  • predictive modeling of material performance in high-radiation environments
  • design of shielding and structural components for spacecraft and satellites

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: neutron embrittlement, radiation damage, nuclear reactor, dbtt, reactor pressure vessel, fracture toughness, lattice defects, irradiation, materials science, nuclear engineering.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti