Casa » Method of Characteristics (math)

Method of Characteristics (math)

1790
  • Joseph-Louis Lagrange
  • Gaspard Monge

A technique for solving first-order and hyperbolic second-order partial differential equations (PDE). The method reduces a PDE to a family of ordinary differential equations (ODEs) along specific curves called ‘characteristics’. Along these curves, the PDE simplifies, allowing the solution to be found by integrating the system of ODEs. It is particularly powerful for problems involving transport and wave propagation.

The core idea of the metodo of characteristics is to find curves in the domain of the PDE along which the solution’s behavior is simpler. For a first-order quasilinear PDE of the form [latex]a(x,y,u)u_x + b(x,y,u)u_y = c(x,y,u)[/latex], the method involves solving a system of ODEs called the characteristic equations: [latex]frac{dx}{dt} = a[/latex], [latex]frac{dy}{dt} = b[/latex], and [latex]frac{du}{dt} = c[/latex]. By solving this system, one can trace back the value of the solution [latex]u[/latex] from a point [latex](x,y)[/latex] to the initial data curve.

For hyperbolic equations, there are multiple families of characteristic curves. For the one-dimensional wave equation [latex]u_{tt} – c^2 u_{xx} = 0[/latex], the characteristics are the straight lines [latex]x pm ct = text{constant}[/latex]. Information, or the values of the solution, propagates along these lines. This is the mathematical basis for d’Alembert’s solution, which shows the solution as a sum of right- and left-traveling waves.

A significant feature of the method when applied to nonlinear equations is its ability to predict and handle the formation of shock waves or discontinuities. If the characteristic curves, which carry constant values of the solution, intersect, it implies that the solution is trying to take on multiple values at the same point. This signals the breakdown of a smooth solution and the formation of a shock, a phenomenon common in gas dynamics and traffic flow.

UNESCO Nomenclature: 1102
– Analysis

Tipo

Software/Algorithm

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • theory of ordinary differential equations (odes)
  • geometric interpretation of derivatives
  • formulation of first-order pdes by d’alembert and euler
  • parametric representation of curves

Applicazioni

  • fluid dynamics for solving the euler equations and modeling shock waves
  • traffic flow analysis
  • gas dynamics and supersonic flow
  • nonlinear wave propagation
  • optimal control theory (hamilton-jacobi-bellman equation)

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: method of characteristics, first-order pde, hyperbolic pde, ode reduction, lagrange-charpit method, shock waves, transport equation, wave propagation

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti