Casa » Finite Element Method

Finite Element Method

1943
  • Richard Courant
  • Alexander Hrennikoff
  • Olgierd Zienkiewicz

The Finite Element Method (FEM) is a powerful numerical technique for solving complex engineering and physics problems described by partial differential equations. It works by discretizing a continuous domain into a set of smaller, simpler subdomains called ‘finite elements’. This allows for the approximate numerical solution of problems in structural analysis, heat transfer, fluid flow, and electromagnetism.

The FEM process begins with the ‘discretization’ of the problem domain into a mesh of finite elements (e.g., triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D). Within each element, the unknown field variable (e.g., displacement) is approximated by simple polynomial functions, known as shape functions. The values of the field at the element nodes become the new unknowns of the problem.

A system of algebraic equations for the entire domain is derived, typically using a variational principle like the principle of minimum potential energy or a weighted residual metodo like the Galerkin method. This process generates an ‘element stiffness matrix’ [latex][k_e][/latex] for each element, which relates the nodal forces [latex]\{f_e\}[/latex] to the nodal displacements [latex]\{u_e\}[/latex] via [latex][k_e] \{u_e\} = \{f_e\}[/latex]. These individual element matrices are then systematically combined (‘assembled’) into a single global stiffness matrix [latex][K][/latex] for the entire structure. After applying known boundary conditions (forces and constraints), the resulting large system of linear equations, [latex][K] \{U\} = \{F\}[/latex], is solved numerically for the unknown global displacement vector [latex]\{U\}[/latex]. Once the nodal displacements are known, other quantities like strains and stresses can be calculated for each element.

UNESCO Nomenclature: 1208
– Numerical analysis

Tipo

Software/Algorithm

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • Calculus of variations
  • Matrix algebra
  • The advent of digital computers
  • Theory of elasticity and continuum meccanica
  • Rayleigh-Ritz method for approximating solutions

Applicazioni

  • structural analysis software (e.g., ansys, abaqus, nastran)
  • automotive crash simulations
  • aerospace component design and stress analysis
  • thermal analysis of electronic components
  • biomechanical simulation of implants and tissues

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: finite element method, fem, numerical analysis, simulation, structural analysis, partial differential equations, meshing, computational mechanics

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti