Casa » Deborah Number

Deborah Number

1960
  • Markus Reiner

The Deborah number is a dimensionless quantity in rheology, used to characterize the fluidity of materials. It is the ratio of the relaxation time, which is an intrinsic property of the material, to the characteristic time scale of the experiment or observation. The formula is [latex]De = \frac{t_c}{t_p}[/latex], where [latex]t_c[/latex] is the relaxation time and [latex]t_p[/latex] is the observation time.

The Deborah number provides a crucial struttura for understanding whether a material will behave as a fluid or a solid under specific conditions. A high Deborah number ([latex]De >> 1[/latex]) indicates solid-like behavior, where the material does not have enough time to relax and flow before the deformation process is complete. In this regime, the material’s elastic properties dominate. A classic example is silly putty, which can be stretched slowly like a liquid ([latex]De <> 1[/latex]).

Conversely, a low Deborah number ([latex]De << 1[/latex]) signifies fluid-like behavior. The observation time is much longer than the material’s relaxation time, allowing molecular chains or particles to rearrange and flow in response to the applied stress. Most common liquids like water have extremely short relaxation times, so their Deborah number is almost always very low in everyday situations, and they behave as simple viscous fluids.

The concept was famously proposed by Markus Reiner, who named it after a line in a song by the prophetess Deborah in the Bible: “The mountains flowed before the Lord”. This poetic reference captures the essence of the concept: even seemingly solid materials like mountains can flow if observed over a sufficiently long timescale (geological time). The Deborah number is fundamental in process engineering, particularly for viscoelastic materials like polymers, where processing speeds (determining [latex]t_p[/latex]) must be carefully controlled relative to the material’s relaxation time ([latex]t_c[/latex]) to avoid defects like melt fracture.

UNESCO Nomenclature: 2203
– Continuum mechanics

Tipo

Abstract System

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • concept of viscosity (newton)
  • theory of elasticity (hooke)
  • development of continuum meccanica
  • understanding of molecular relaxation processes

Applicazioni

  • polymer processing
  • glass produzione
  • geophysics (mantle convection)
  • food processing

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: deborah number, rheology, viscoelasticity, dimensionless number, relaxation time, fluid dynamics, continuum mechanics, markus reiner

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti