Casa » The Cavalieri’s Principle

The Cavalieri’s Principle

1635
  • Bonaventura Cavalieri

Also known as the method of indivisibles, this principle states that if two solids lying between two parallel planes have the property that every plane parallel to the two given planes intersects them in cross-sections of equal area, then the two solids have equal volumes. It provides a powerful method for calculating volumes of complex shapes without calculus.

Cavalieri’s principle offers an elegant and intuitive way to determine the volume of three-dimensional objects. It formalizes the idea of slicing a solid into an infinite number of infinitesimally thin cross-sections, or “indivisibles.” The core idea is that if you have two solids, and for every possible height, the cross-sectional area of the first solid is equal to the cross-sectional area of the second solid, then their total volumes must be the same. It’s like comparing two stacks of coins; if each coin in one stack has the same area as the corresponding coin in the other stack, the total volume of metal is the same, regardless of how the stacks are skewed or arranged.

A classic application of this principle is to find the volume of a sphere. Consider a hemisphere of radius [latex]r[/latex]. Its cross-sectional area at a height [latex]h[/latex] from the base is a circle with area [latex]A = \pi(r’)^2[/latex]. By the Pythagorean theorem, [latex]h^2 + (r’)^2 = r^2[/latex], so [latex](r’)^2 = r^2 – h^2[/latex]. Thus, the area is [latex]A = \pi(r^2 – h^2)[/latex]. Now, consider a cylinder of radius [latex]r[/latex] and height [latex]r[/latex], with an inverted cone of the same radius and height removed from its center. The cross-sectional area of this shape at height [latex]h[/latex] is the area of the larger circle (from the cylinder) minus the area of the smaller circle (from the cone). This gives [latex]A = \pi r^2 – \pi h^2 = \pi(r^2 – h^2)[/latex].

Since the cross-sectional areas are identical at every height [latex]h[/latex], Cavalieri’s principle states that the volume of the hemisphere is equal to the volume of the cylinder-minus-cone shape. The volume of the cylinder is [latex]\pi r^2 \cdot r = \pi r^3[/latex], and the volume of the cone is [latex]\frac{1}{3}\pi r^2 \cdot r = \frac{1}{3}\pi r^3[/latex]. Therefore, the hemisphere’s volume is [latex]\pi r^3 – \frac{1}{3}\pi r^3 = \frac{2}{3}\pi r^3[/latex]. The volume of the full sphere is twice this, or [latex]\frac{4}{3}\pi r^3[/latex]. This method, developed by Bonaventura Cavalieri in the 17th century, was a significant step towards the development of integral calculus by Newton and Leibniz.

UNESCO Nomenclature: 1204
– Geometry

Tipo

Abstract System

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • Archimedes’ method of exhaustion
  • Work of Zu Gengzhi in 5th-century China on calculating the volume of a sphere
  • The concept of infinitesimals in early mathematics

Applicazioni

  • calculating the volume of a sphere
  • deriving the volume formula for cones and pyramids
  • integral calculus (as a precursor concept)
  • computer tomography (ct) scan analysis for volume measurement
  • geotechnical engineering for estimating earthwork volumes

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: cavalieri’s principle, method of indivisibles, volume calculation, integral calculus, cross-section, sphere volume, solid geometry, cylinder

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti