A Carbon Nanotube Field-Effect Transistor (CNTFET) utilizes a single carbon nanotube (CNT) or an array of CNTs as the channel material instead of bulk silicon. Depending on its chirality (the arrangement of its graphene lattice), a CNT can be either metallic or semiconducting, making it a versatile building block for nanoelectronic devices with superior performance potential.
Carbon Nanotube Field-Effect Transistor (CNTFET)
- Sumio Iijima
- Cees Dekker
- Phaedon Avouris
A CNTFET operates on the same principle as a conventional MOSFET. It has a source, a drain, and a gate terminal. The key difference is the channel, which is formed by one or more carbon nanotubes. When a voltage is applied to the gate, it creates an electric field that modulates the conductivity of the semiconducting CNT, turning the flow of current between the source and drain ‘on’ or ‘off’. The exceptional properties of CNTs make them highly attractive for this application. They exhibit extremely high carrier mobility, meaning electrons can travel through them with very little scattering, which translates to faster switching speeds and higher current-carrying capacity. Their one-dimensional structure provides excellent electrostatic control by the gate, reducing short-channel effects that plague scaled-down silicon transistors.
However, significant challenges have prevented the widespread commercialization of CNTFETs. A major hurdle is the synthesis of CNTs. Typical synthesis methods produce a mixture of metallic and semiconducting nanotubes. The metallic ones act as short circuits, preventing the transistor from turning off completely and leading to high power leakage. Separating these types with 100% purity on a large scale is difficult and expensive. Another challenge is placing the CNTs with precise alignment and density on a wafer. Finally, making low-resistance electrical contacts to the ends of the nanotubes is non-trivial and can limit overall device performance.
Despite these issues, research has made significant progress. Techniques have been developed to selectively remove metallic CNTs or to convert them into semiconducting ones. Demonstrations of complex circuits, including a 16-bit microprocessor, have been built using CNTFETs, proving the viability of the technology. Their unique properties also make them ideal for novel applications like highly sensitive biosensors, where the CNT’s conductance changes dramatically upon the attachment of a target molecule, and for flexible electronics due to their inherent mechanical strength and flexibility.
Tipo
Disruption
Utilizzo
Precursors
- invention of the field-effect transistor (FET)
- discovery of fullerenes
- discovery and synthesis of carbon nanotubes
- development of semiconductor fabrication techniques (lithography, deposition)
Applicazioni
- high-frequency electronics
- chemical and biological sensors
- flexible and transparent electronics
- potential replacement for silicon in future logic circuits
Brevetti:
- US6835601B2
- US7015501B2
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Historical Context
Carbon Nanotube Field-Effect Transistor (CNTFET)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles