This theorem states that for any continuous function [latex]f[/latex] mapping a compact convex set to itself, there is a point [latex]x_0[/latex] such that [latex]f(x_0) = x_0[/latex]. This point is called a fixed point. Informally, if you take a map of a country, crumple it up, and place it inside the country’s borders, there will always be at least one point on the map directly above its corresponding real-world location.
Brouwer Fixed-Point Theorem
- L. E. J. Brouwer
The Brouwer fixed-point theorem is a cornerstone of fixed-point theory and has profound implications in many areas of mathematics. The theorem applies to any continuous function [latex]f: D^n \to D^n[/latex], where [latex]D^n[/latex] is the closed n-dimensional unit ball. The proof is non-constructive; it guarantees the existence of a fixed point but does not provide a metodo to find it. The proof for [latex]n=1[/latex] is a simple consequence of the Intermediate Value Theorem. For higher dimensions, the proof is more complex and typically relies on tools from algebraic topology, such as homology or the concept of the degree of a map. One common proof strategy uses a retraction argument. It assumes, for the sake of contradiction, that a continuous function [latex]f: D^n \to D^n[/latex] has no fixed point. One can then construct a continuous function (a retraction) [latex]r: D^n \to S^{n-1}[/latex] from the disk to its boundary sphere, which can be shown to be impossible. The theorem’s power lies in its generality; it requires only continuity of the function and compactness and convexity of the domain, making it applicable to a wide range of problems where one needs to prove the existence of a solution or equilibrium state.
Tipo
Disruption
Utilizzo
Precursors
- Intermediate Value Theorem by Bolzano and Cauchy
- Work on existence theorems by Poincaré and Bohl
- Development of algebraic topology by Henri Poincaré
- Jacques Hadamard’s work on related problems
Applicazioni
- game theory (proving the existence of Nash equilibria)
- economics (general equilibrium theory)
- computer graphics (calculating object transformations)
- numerical analysis (finding roots of equations)
- control theory
Brevetti:
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Historical Context
Brouwer Fixed-Point Theorem
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles