Casa » Affine Variety

Affine Variety

1900

An affine variety is the set of points in an affine space whose coordinates are the common zeros of a finite set of polynomials. For a set of polynomials [latex]S = \{f_1, \dots, f_k\}[/latex] in a polynomial ring [latex]k[x_1, \dots, x_n][/latex], the corresponding affine variety is [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex]. It is a central object of study in classical algebraic geometry.

An affine variety is the most fundamental object in classical algebraic geometry, directly generalizing the geometric idea of a solution set to a system of equations. The polynomials are defined over a field [latex]k[/latex], which is often taken to be algebraically closed, such as the field of complex numbers [latex]\mathbb{C}[/latex], to ensure a rich supply of points. The set of all affine varieties in a given affine space [latex]k^n[/latex] forms the closed sets of a topology, known as the Zariski topology. This topology is quite different from more familiar topologies like the Euclidean topology; for instance, it is not Hausdorff.

The crucial insight is the connection between these geometric objects (varieties) and algebraic objects (ideals in a polynomial ring). Specifically, every variety [latex]V(S)[/latex] corresponds to an ideal [latex]I(V(S))[/latex], which consists of all polynomials that vanish on every point of the variety. This correspondence is made precise by Hilbert’s Nullstellensatz, which establishes a bijection between affine varieties and radical ideals in the polynomial ring [latex]k[x_1, \dots, x_n][/latex]. This dictionary between algebra and geometry allows geometric problems to be translated into the language of commutative algebra, where powerful tools can be applied, and vice versa. For example, the dimension of a variety can be defined algebraically using the Krull dimension of its coordinate ring.

UNESCO Nomenclature: 1101
– Algebra

Tipo

Abstract System

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • analytic geometry (descartes, fermat)
  • theory of polynomial rings (hilbert, noether)
  • ideal theory (dedekind, krull)
  • elimination theory (sylvester, cayley)

Applicazioni

  • crittografia (elliptic curve cryptography)
  • robotica (solving inverse kinematics equations)
  • coding theory (algebraic geometry codes)
  • computer-aided geometric design (cagd)
  • statistics (algebraic statistics)

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: affine variety, polynomial equations, zero-set, algebraic set, commutative algebra, Zariski topology, ideal, classical algebraic geometry

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti