This law states that the electromotive force (EMF, [latex]\mathcal{E}[/latex]) induced in any closed circuit is equal to the negative of the time rate of change of the magnetic flux ([latex]\Phi_B[/latex]) through the circuit. The mathematical expression is [latex]\mathcal{E} = -\frac{d\Phi_B}{dt}[/latex]. This principle is the basis for electric generators, transformers, and inductors, describing the macroscopic effect of induction.
Faraday’s Law of Induction (integral form)
- Michael Faraday
The integral form of Faraday’s law of induction provides a macroscopic view of the relationship between a changing magnetic environment and an electrical circuit. It defines the electromotive force, or EMF ([latex]\mathcal{E}[/latex]), as the line integral of the electric field [latex]\mathbf{E}[/latex] around a closed loop [latex]\partial\Sigma[/latex]: [latex]\mathcal{E} = \oint_{\partial\Sigma} \mathbf{E} \cdot d\mathbf{l}[/latex]. This EMF represents the total voltage that would be measured by a voltmeter placed in the loop if it were cut open. The law equates this EMF to the rate of change of magnetic flux, [latex]\Phi_B[/latex], passing through the surface [latex]\Sigma[/latex] bounded by the loop.
Magnetic flux is defined as the surface integral of the magnetic field [latex]\mathbf{B}[/latex] over the surface [latex]\Sigma[/latex]: [latex]\Phi_B = \iint_\Sigma \mathbf{B} \cdot d\mathbf{A}[/latex]. Therefore, the full law is written as [latex]\oint_{\partial\Sigma} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \iint_\Sigma \mathbf{B} \cdot d\mathbf{A}[/latex]. The negative sign, formalized by Lenz’s law, indicates that the induced EMF creates a current that generates a magnetic field opposing the original change in flux. This opposition is a manifestation of the conservation of energy.
This law is remarkably general. The change in flux can be caused by several factors: the magnetic field itself can change in strength, the loop can change its area, the orientation of the loop relative to the field can change, or any combination of these. This polyvalence explains its application in a vast range of devices. For instance, in an AC generator, a coil of wire (the loop) is rotated in a constant magnetic field, continuously changing the orientation and thus the flux, inducing a sinusoidal EMF. In a transformer, a changing current in a primary coil creates a changing magnetic field, which in turn induces an EMF in a secondary coil.
Type
Disruption
Utilisation
Precursors
- Discovery of the magnetic properties of lodestone
- William Gilbert’s work on magnetism (‘De Magnete’, 1600)
- Hans Christian Ørsted’s observation that electric currents create magnetic fields (1820)
- André-Marie Ampère’s mathematical description of electromagnetism
Applications
- electric transformers
- alternating current (AC) generators
- induction motors
- inductors in electronic circuits
- credit card magnetic stripe readers
- electric guitar pickups
- ground fault circuit interrupters (GFCIs)
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Faraday’s Law of Induction (integral form)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles