The Zeeman effect is the splitting of an atomic spectral line into multiple components when an external static magnetic field is applied. This splitting occurs because the magnetic field interacts with the magnetic dipole moment associated with the atom’s orbital and spin angular momentum, shifting the energy levels of its electrons, a phenomenon crucial for probing atomic structure.
The Zeeman Effect
- Pieter Zeeman
Discovered by Dutch physicist Pieter Zeeman in 1896, the Zeeman effect was a pivotal observation in the development of modern physics. When an atom is placed in a magnetic field, its energy levels, which are normally degenerate (having the same energy), are split. This is because the magnetic field interacts with the magnetic moment of the atom. This magnetic moment has two primary sources: the motion of electrons orbiting the nucleus (orbital angular momentum) and the intrinsic quantum property of electrons known as spin (spin angular momentum). The interaction lifts the degeneracy of states with different magnetic quantum numbers.
When an electron transitions between these split energy levels, it emits or absorbs a photon. Since there are now multiple possible final energy states, a single spectral line, corresponding to a transition in the absence of a field, splits into several distinct lines. The spacing and polarization of these lines provide detailed information about the atom’s electronic structure, including its angular momentum quantum numbers. Hendrik Lorentz provided an early classical explanation, but a complete understanding required the advent of quantum mecánica and the concept of electron spin. The effect is categorized into the ‘normal’ Zeeman effect (for atoms with zero total spin) and the more common ‘anomalous’ Zeeman effect (for atoms with non-zero spin).
Tipo
Disrupción
Utilización
Precursores
- Michael Faraday’s work on electromagnetism and the Faraday effect
- James Clerk Maxwell’s equations of electromagnetism
- the development of high-resolution espectroscopia by Kirchhoff and Bunsen
- Hendrik Lorentz’s classical electron theory
- the discovery of the electron by J.J. Thomson
Aplicaciones
- nuclear magnetic resonance (NMR) spectroscopy
- magnetic resonance imaging (MRI)
- electron spin resonance (esr) spectroscopy
- atomic absorption spectroscopy (AAS) for elemental analysis
- astrophysical measurements of stellar and solar magnetic fields
- laser cooling and trapping of atoms
Patentes:
Posibles ideas innovadoras
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Invención, innovación y principios técnicos relacionados