The von Mises yield criterion predicts that yielding of a ductile material begins when the second deviatoric stress invariant, [latex]J_2[/latex], reaches a critical value. It is often expressed in terms of the von Mises stress, [latex]\sigma_v[/latex], a scalar value that must be less than the material’s yield strength, [latex]\sigma_y[/latex]. Yielding occurs when [latex]\sigma_v = \sigma_y[/latex].
Von Mises Yield Criterion
- Richard von Mises
- Maksymilian Tytus Huber
The von Mises yield criterion, also known as the maximum distortion energy criterion, is a widely used model for predicting the onset of plastic deformation in ductile materials. It postulates that yielding begins when the elastic strain energy of distortion per unit volume in a material reaches a critical value. This is distinct from the hydrostatic energy (associated with volume change), which is assumed not to contribute to yielding in ductile metals.
Mathematically, this is equivalent to stating that the second invariant of the deviatoric stress tensor, [latex]J_2[/latex], reaches a constant value. The deviatoric stress tensor is the total stress tensor minus its hydrostatic component. The criterion is often expressed through the von Mises equivalent stress, [latex]\sigma_v[/latex], which is a scalar combination of the six components of the stress tensor. For a general 3D state of stress, it is calculated as: [latex]\sigma_v = \sqrt{\frac{1}{2}[(\sigma_{11}-\sigma_{22})^2 + (\sigma_{22}-\sigma_{33})^2 + (\sigma_{33}-\sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)]}[/latex].
Yielding is predicted to occur when [latex]\sigma_v[/latex] equals the material’s yield strength, [latex]\sigma_y[/latex], which is typically determined from a simple uniaxial tensile test. In principal stress space, the von Mises criterion defines a smooth, circular cylinder whose axis is the hydrostatic line ([latex]\sigma_1 = \sigma_2 = \sigma_3[/latex]). This contrasts with the Tresca criterion, which defines a hexagonal prism. The von Mises criterion generally provides a better fit with experimental data for most ductile metals and is continuously differentiable, which is advantageous in numerical computations.
Tipo
Disruption
Utilización
Precursors
- Beltrami’s total strain energy theory
- Huber’s earlier formulation of the distortion energy concept
- Development of the Cauchy stress tensor
- Experimental observations of yielding in ductile metals
Aplicaciones
- predicting failure in ductile materials like steel and aluminum in mechanical and civil engineering
- finite element analysis (FEA) to visualize and assess stress concentrations
- design of pressure vessels and piping systems
- automotive component design for durability and crash safety
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Related Invention, Innovation & Technical Principles