Hogar » Viscoelasticity

Viscoelasticity

1850

Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like honey, resist shear flow and strain linearly with time when a stress is applied. Elastic materials, like a rubber band, strain when stretched and quickly return to their original state once the stress is removed. Viscoelastic materials have elements of both.

Viscoelastic behavior is a consequence of the time-dependent rearrangement of a material’s microstructure. When a stress is applied, some of the energy is stored elastically in the stretching or bending of molecular bonds, while some is dissipated as heat through the viscous sliding of molecules past one another. This dual behavior leads to several characteristic phenomena. One is creep, where the material continues to deform slowly over time under a constant load. Another is stress relaxation, where the stress required to maintain a constant strain decreases over time as the material’s internal structure rearranges.

This time-dependent response is often modeled using combinations of ideal springs (representing the elastic component, following Hooke’s Law) and dashpots (representing the viscous component, following Newton’s Law of Viscosity). Simple models like the Maxwell model (spring and dashpot in series) and the Kelvin-Voigt model (spring and dashpot in parallel) capture the basic features of stress relaxation and creep, respectively. More complex models, such as the Standard Linear Solid model, combine these elements to provide a more accurate description of real materials.

The behavior of viscoelastic materials is also highly dependent on temperature and the rate of applied strain. At low temperatures or high strain rates, they tend to behave more like elastic solids, while at high temperatures or low strain rates, they behave more like viscous fluids. This is known as the time-temperature superposition principle.

UNESCO Nomenclature: 2203
– Continuum mechanics

Tipo

Abstract System

Disruption

Foundational

Utilización

Widespread Use

Precursors

  • hooke’s law of elasticity (1660)
  • newton’s law of viscosity (1687)
  • early studies on the after-effects of elasticity by wilhelm weber (1835)
  • development of polymer science

Aplicaciones

  • memory foam mattresses
  • shock absorbers in vehicles
  • synthetic polymers and plastics
  • human tissues and biomechanics
  • vibration damping materials
  • pressure-sensitive adhesives

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: viscoelasticity, rheology, creep, stress relaxation, polymers, biomechanics, maxwell model, kelvin-voigt model

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar