Young’s Modulus, denoted by E, quantifies a solid material’s stiffness. It is the ratio of tensile stress ([latex]\sigma[/latex]) to extensional strain ([latex]\epsilon[/latex]) in the elastic (linear) region of the stress-strain curve. This relationship is defined by Hooke’s Law: [latex]E = \frac{\sigma}{\epsilon}[/latex]. A higher modulus indicates a stiffer material, meaning more stress is required for a given amount of elastic deformation.
Young’s Modulus (Modulus of Elasticity)
- Thomas Young

Young’s Modulus is a fundamental property intrinsic to a material, assuming it is isotropic and linear elastic. It is determined from the slope of the initial, straight-line portion of a stress-strain curve obtained during tensile testing. This region is known as the elastic region, where the material will return to its original shape if the load is removed. The formula [latex]E = \frac{\sigma}{\epsilon} = \frac{F/A_0}{\Delta L/L_0}[/latex] relates stress (force F per initial cross-sectional area A₀) to strain (change in length ΔL over original length L₀). The concept originates from Hooke’s Law, which states that for relatively small deformations, the force required to stretch or compress a spring is directly proportional to the distance of that extension or compression. Thomas Young elaborated on this concept in the early 19th century, applying it to the intrinsic properties of materials rather than just the behavior of an object like a spring. This was a crucial step in moving from empirical observations to a quantitative science of materials. The modulus is temperature and pressure dependent, but for many engineering applications at standard conditions, it is treated as a constant. It is a critical parameter for predicting how a component will deform under load, essential for designing safe and reliable structures, from bridges to microchips.
Tipo
Disrupción
Utilización
Precursores
- Robert Hooke’s law of elasticity (1678)
- Leonhard Euler’s work on the buckling of columns (1757)
- development of the concept of stress and strain
Aplicaciones
- structural engineering for calculating beam deflection
- finite element analysis (FEA) simulations
- design of springs and fasteners
- aerospace engineering for material selection
- biomechanics for modeling bone and tissue
Patentes:
Posibles ideas innovadoras
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Invención, innovación y principios técnicos relacionados