It is impossible to simultaneously know with perfect accuracy certain pairs of complementary physical properties of a particle. The most common example is the position [latex]x[/latex] and momentum [latex]p[/latex]. The principle states that the product of their uncertainties, [latex]\Delta x[/latex] and [latex]\Delta p[/latex], must be greater than or equal to a specific value: [latex]\Delta x \Delta p \ge \frac{\hbar}{2}[/latex].
Heisenberg Uncertainty Principle
- Werner Heisenberg
The Heisenberg Uncertainty Principle is a fundamental tenet of quantum mecánica, not a statement about the limitations of measurement technology. It reflects an inherent property of quantum systems. The principle arises from the wave-like nature of all quantum objects. A particle’s position and momentum are described by its wavefunction. A wavefunction that is highly localized in space (small [latex]\Delta x[/latex]) is necessarily composed of a wide superposition of many different momentum waves, resulting in a large uncertainty in momentum (large [latex]\Delta p[/latex]). Conversely, a wavefunction with a well-defined momentum (small [latex]\Delta p[/latex]) must be a spatially spread-out wave, leading to a large uncertainty in position (large [latex]\Delta x[/latex]).
The principle applies to any pair of ‘conjugate variables,’ which are related through Fourier transforms in the mathematical formalism of quantum mechanics. Another important pair is energy ([latex]E[/latex]) and time ([latex]t[/latex]), with the relation [latex]\Delta E \Delta t \ge \frac{\hbar}{2}[/latex]. This implies that the energy of a state that exists for only a short time cannot be precisely determined. This has profound consequences, such as allowing for the temporary creation of ‘virtual particles’ in quantum field theory, which mediate fundamental forces. The uncertainty principle fundamentally limits the determinism envisioned by classical physics, replacing it with a probabilistic description of nature at the smallest scales.
Tipo
Disruption
Utilización
Precursors
- Matrix mechanics (1925)
- Wave mechanics (Schrödinger, 1926)
- Fourier analysis
- Born rule (probabilistic interpretation of wavefunction, 1926)
Aplicaciones
- understanding the stability of atoms
- explaining quantum tunneling
- estimating the size and energy of atomic ground states
- fundamental limits in quantum measurement and tratamiento de señales
- quantum criptografía
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
Heisenberg Uncertainty Principle
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles