Temper embrittlement is a reduction in the toughness of certain alloy steels caused by holding them in, or slowly cooling them through, a specific temperature range (approximately 375–575 °C). This phenomenon is driven by the segregation of impurity elements (e.g., phosphorus, tin, antimony) to the grain boundaries, which weakens the cohesion between grains and promotes intergranular fracture.
Temper Embrittlement in Alloy Steels
The mechanism of temper embrittlement is a classic example of equilibrium segregation. At elevated temperatures, impurity atoms are dissolved within the metal grains. As the steel cools into the embrittling range, these impurities become less soluble and find it energetically favorable to migrate to the high-energy regions of the grain boundaries. Certain alloying elements, like manganese and nickel, can co-segregate with the impurities, exacerbating the effect. The result is a dramatic increase in the ductile-to-brittle transition temperature (DBTT), meaning the steel can fracture in a brittle way at temperatures where it should be tough.
A key characteristic of temper embrittlement is that it is reversible. If an embrittled component is reheated to a temperature above the critical range (e.g., >600 °C) and then cooled rapidly (quenched), the impurities are re-dissolved into the grains, and toughness is restored. This understanding was a crucial novelty in physical metallurgy, demonstrating that mechanical properties were not static but could be degraded by subtle, time-dependent changes in micro-chemistry at internal interfaces. It led to major changes in steelmaking and heat treatment practices for heavy-section components.
Tipo
Disrupción
Utilización
Precursores
- development of alloy steels by adding elements like chromium, nickel, and manganese
- advances in metallography for viewing the microstructure of metals
- understanding of diffusion processes in solids (fick’s laws)
- industrial demand for high-strength steels for applications like cannons, boilers, and turbines
- development of standardized mechanical tests like the charpy impact test to quantify toughness
Aplicaciones
- strict control of heat treatment procedures for large steel forgings like turbine rotors and pressure vessels
- specification of high-purity steel grades with low levels of p, sn, sb, and as for critical applications
- development of alloys containing molybdenum or tungsten, which help to scavenge impurities and mitigate segregation
- failure analysis of industrial components that operate within the embrittling temperature range
Patentes:
Posibles ideas innovadoras
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Invención, innovación y principios técnicos relacionados