A fundamental principle stating that the total energy of an isolated system remains constant over time. Energy can neither be created nor destroyed, only transformed from one form to another, such as from potential to kinetic energy. In classical mechanics, for systems with only conservative forces, the total mechanical energy [latex]E = T + V[/latex] is conserved.
Conservation of Energy
- Émilie du Châtelet
- Julius Robert von Mayer
- James Prescott Joule
- Hermann von Helmholtz
The law of conservation of energy is one of the most fundamental and universally applicable principles in all of science. Its development spanned centuries, evolving from early ideas about motion into a precise mathematical statement in the 19th century that unified mechanics, heat, and chemistry.
In the context of classical mechanics, the principle is most clearly seen in systems subject only to conservative forces, such as gravity or the force from an ideal spring. A force is conservative if the work it does on an object moving between two points is independent of the path taken. For such forces, a potential energy function [latex]V[/latex] can be defined. The work-energy theorem states that the net work done on an object equals the change in its kinetic energy, [latex]W_{net} = \Delta T[/latex]. For conservative forces, this work can be expressed as the negative change in potential energy, [latex]W_{cons} = -\Delta V[/latex]. Combining these gives [latex]\Delta T = -\Delta V[/latex], or [latex]\Delta T + \Delta V = \Delta(T+V) = 0[/latex]. This shows that the total mechanical energy, [latex]E = T + V[/latex], is a constant of motion.
When non-conservative forces like friction are present, mechanical energy is not conserved; it is typically dissipated as heat. However, the total energy of the isolated system, including this thermal energy, is still conserved. This broader principle is the First Law of Thermodynamics.
In the 20th century, Emmy Noether’s theorem provided a deeper understanding of this law. It showed that the conservation of energy is a direct mathematical consequence of a fundamental symmetry of the universe: the fact that the laws of physics do not change over time (time-translation invariance).
Tipo
Disruption
Utilización
Precursors
- Vis viva concept (Gottfried Leibniz)
- Studies on heat and work (Sadi Carnot, Émile Clapeyron)
- Newtonian mechanics
- Galileo’s experiments with pendulums
Aplicaciones
- power generation (hydroelectric dams, thermal plants)
- thermodynamics and engine design
- chemical reaction analysis (enthalpy)
- roller coaster design
- understanding metabolic processes in biology
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Related Invention, Innovation & Technical Principles