Hogar » El principio de Cavalieri

El principio de Cavalieri

1635
  • Bonaventura Cavalieri
Derivación matemática del Principio de Cavalieri con formas geométricas en un entorno de estudio histórico.

Also known as the método of indivisibles, this principle states that if two solids lying between two parallel planes have the property that every plane parallel to the two given planes intersects them in cross-sections of equal area, then the two solids have equal volumes. It provides a powerful method for calculating volumes of complex shapes without calculus.

Cavalieri’s principle offers an elegant and intuitive way to determine the volume of three-dimensional objects. It formalizes the idea of slicing a solid into an infinite number of infinitesimally thin cross-sections, or “indivisibles.” The core idea is that if you have two solids, and for every possible height, the cross-sectional area of the first solid is equal to the cross-sectional area of the second solid, then their total volumes must be the same. It’s like comparing two stacks of coins; if each coin in one stack has the same area as the corresponding coin in the other stack, the total volume of metal is the same, regardless of how the stacks are skewed or arranged.

A classic application of this principle is to find the volume of a sphere. Consider a hemisphere of radius [latex]r[/latex]. Its cross-sectional area at a height [latex]h[/latex] from the base is a circle with area [latex]A = \pi(r’)^2[/latex]. By the Pythagorean theorem, [latex]h^2 + (r’)^2 = r^2[/latex], so [latex](r’)^2 = r^2 – h^2[/latex]. Thus, the area is [latex]A = \pi(r^2 – h^2)[/latex]. Now, consider a cylinder of radius [latex]r[/latex] and height [latex]r[/latex], with an inverted cone of the same radius and height removed from its center. The cross-sectional area of this shape at height [latex]h[/latex] is the area of the larger circle (from the cylinder) minus the area of the smaller circle (from the cone). This gives [latex]A = \pi r^2 – \pi h^2 = \pi(r^2 – h^2)[/latex].

Since the cross-sectional areas are identical at every height [latex]h[/latex], Cavalieri’s principle states that the volume of the hemisphere is equal to the volume of the cylinder-minus-cone shape. The volume of the cylinder is [latex]\pi r^2 \cdot r = \pi r^3[/latex], and the volume of the cone is [latex]\frac{1}{3}\pi r^2 \cdot r = \frac{1}{3}\pi r^3[/latex]. Therefore, the hemisphere’s volume is [latex]\pi r^3 – \frac{1}{3}\pi r^3 = \frac{2}{3}\pi r^3[/latex]. The volume of the full sphere is twice this, or [latex]\frac{4}{3}\pi r^3[/latex]. This method, developed by Bonaventura Cavalieri in the 17th century, was a significant step towards the development of integral calculus by Newton and Leibniz.

UNESCO Nomenclature: 1204
- Geometría

Tipo

Sistema abstracto

Disrupción

Sustancial

Utilización

Uso generalizado

Precursores

  • Archimedes’ method of exhaustion
  • Work of Zu Gengzhi in 5th-century China on calculating the volume of a sphere
  • The concept of infinitesimals in early mathematics

Aplicaciones

  • calculating the volume of a sphere
  • deriving the volume formula for cones and pyramids
  • integral calculus (as a precursor concept)
  • computer tomography (ct) scan analysis for volume measurement
  • geotechnical engineering for estimating earthwork volumes

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: cavalieri’s principle, method of indivisibles, volume calculation, integral calculus, cross-section, sphere volume, solid geometry, cylinder.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar