Repeatability assesses precision under identical conditions, while reproducibility assesses precision when one or more conditions change, such as the operator, instrument, or location. Reproducibility variance is always greater than or equal to repeatability variance. This distinction is crucial for understanding measurement variability, especially in inter-laboratory comparisons where conditions are inherently different.
Repeatability vs. Reproducibility
The distinction between repeatability and reproducibility is fundamental to Measurement Systems Analysis (MSA) and is formally defined in standards like ISO 5725. Repeatability represents the best-case precision of a measurement system, capturing only the random error inherent in the process under controlled conditions. Reproducibility, on the other hand, introduces systematic and random errors arising from changes in the measurement environment. These changes can include different operators, different setups of the same instrument type, different laboratories, and measurements taken over longer time periods.
The relationship between them is often expressed through variance components. The total variance observed under reproducibility conditions ([latex]s_R^2[/latex]) can be modeled as the sum of the repeatability variance ([latex]s_r^2[/latex]) and the variance between the changing conditions, such as the between-laboratory variance ([latex]s_L^2[/latex]): [latex]s_R^2 = s_r^2 + s_L^2[/latex]. This model highlights that reproducibility will always be worse than or equal to repeatability (i.e., [latex]s_R \ge s_r[/latex]). A Verfahren with good repeatability but poor reproducibility is not robust and its results are highly dependent on the specific context, making it unsuitable for standardization. Gage R&R studies are designed specifically to quantify these two components of variation to determine if a measurement system is adequate for its intended purpose, such as controlling a Herstellung Prozess.
Typ
Disruption
Verwendung
Precursors
- The concept of experimental design and variance partitioning by Ronald Fisher
- The increasing need for standardized testing methods to support global trade and regulation
- The development of statistical quality control by Shewhart and Deming
- The establishment of proficiency testing schemes by regulatory and accreditation bodies
Anwendungen
- inter-laboratory proficiency testing
- standardization of test methods across different industries
- evaluating the robustness of a measurement procedure
- collaborative studies for establishing standard reference materials
- Gage R&R studies in manufacturing
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Repeatability vs. Reproducibility
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles