Electrochemical potential, [latex]\bar{\mu}_i[/latex], quantifies the total energy of a charged species `i` in a system. It combines the chemical potential, [latex]\mu_i[/latex], which accounts for concentration and intrinsic properties, with the electrostatic potential energy, [latex]z_i F \phi[/latex]. The formula is [latex]\bar{\mu}_i = \mu_i + z_i F \phi[/latex], where [latex]z_i[/latex] is the ion’s charge, [latex]F[/latex] is the Faraday constant, and [latex]phi[/latex] is the local electric potential.
The Fundamental Equation of Electrochemical Potential
- E. A. Guggenheim
The concept of electrochemical potential is a cornerstone of physical chemistry, extending the idea of chemical potential to systems involving charged species and electrical fields. The governing equation, [latex]\bar{\mu}_i = \mu_i + z_i F \phi[/latex], elegantly merges chemical and electrical driving forces into a single thermodynamisch quantity. The first term, [latex]\mu_i[/latex], is the chemical potential, representing the energy change associated with adding a mole of species `i` to a system, considering factors like concentration, temperature, and pressure. It is the driving force for diffusion from high to low concentration.
The second term, [latex]z_i F \phi[/latex], represents the molar electrostatic potential energy. Here, [latex]z_i[/latex] is the dimensionless integer charge of the ion (e.g., +2 for [latex]Ca^{2+}[/latex]), [latex]F[/latex] is the Faraday constant (approximately 96,485 C/mol), which is the charge of one mole of electrons, and [latex]\phi[/latex] is the local electric potential (Galvani potential). This term quantifies the work required to move a mole of ions against the local electric field.
Fundamentally, the electrochemical potential is the partial molar Gibbs free energy of the species `i`, expressed as [latex]\bar{mu}_i = (\frac{\partial G}{\partial n_i})_{T,P,n_{j\neq i}}[/latex]. This means it represents the total work that can be extracted when one mole of the species is added to the system. The difference in electrochemical potential between two points dictates the direction of spontaneous movement for that ion, encompassing both diffusion down a concentration gradient and drift along an electric field.
Typ
Disruption
Verwendung
Precursors
- Josiah Willard Gibbs’s work on chemical potential and Gibbs free energy
- Michael Faraday’s laws of electrolysis and the concept of the faraday constant
- Walther Nernst’s development of the Nernst Gleichung
- the development of classical thermodynamics and electrostatics
Anwendungen
- batteries and fuel cells
- electroplating and corrosion science
- semiconductor physics (Fermi level)
- neuroscience (nerve impulses)
- cellular bioenergetics (atp synthesis)
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
The Fundamental Equation of Electrochemical Potential
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles