» Principal and Maximum Shear Stresses (Mohr’s Circle)

Principal and Maximum Shear Stresses (Mohr’s Circle)

1882-01-01
  • Christian Otto Mohr
Mohr's circle diagram illustrating principal and maximum shear stresses in materials science.

The principal stresses, [latex]\sigma_1[/latex] and [latex]\sigma_2[/latex], are the maximum and minimum normal stresses at a point, occurring on planes with zero shear stress. On Mohr’s circle, these correspond to the two points where the circle intersects the horizontal ([latex]\sigma_n[/latex]) axis. The maximum in-plane shear stress, [latex]\tau_{max}[/latex], is equal to the radius of the circle, [latex]R[/latex].

Identifying principal stresses and maximum shear 强调 is a primary application of Mohr’s circle. The principal stresses are the eigenvalues of the stress tensor and represent the extreme values of normal stress. They are found at the intersections of the circle with the [latex]\sigma_n[/latex] axis, calculated as [latex]\sigma_{1,2} = \sigma_{avg} \pm R[/latex], where [latex]\sigma_{avg}[/latex] is the center of the circle and [latex]R[/latex] is its radius. The planes on which these stresses act are called principal planes, and they are mutually orthogonal. On Mohr’s circle, the angle [latex]2\theta_p[/latex] from the reference state to the principal state can be found using trigonometry: [latex]\tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x – \sigma_y}[/latex].

The maximum in-plane shear stress, [latex]\tau_{max}[/latex], corresponds to the highest and lowest points on the circle, with a magnitude equal to the circle’s radius, [latex]R[/latex]. The planes of maximum shear are oriented at 45 degrees to the principal planes. This is visually represented on the circle by a 90-degree rotation from the principal stress points. Understanding these maximum values is critical in engineering design, as material failure, particularly in ductile materials, is often initiated by shear stress. Failure theories, such as the Tresca (Maximum Shear Stress) criterion, directly use this value to predict the onset of yielding.

UNESCO Nomenclature: 3328
– Materials science and engineering

类型

抽象系统

中断

实质性

使用方法

广泛使用

前体

  • Rankine’s theory of earth 压力
  • Cauchy’s stress tensor
  • Navier’s equations of motion for elastic solids
  • The concept of eigenvalues and eigenvectors in linear algebra

应用

  • failure analysis of materials (e.g., tresca and von mises yield criteria)
  • design of pressure vessels and pipes
  • structural analysis of bridges and buildings
  • geotechnical engineering for slope stability analysis

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: principal stress, maximum shear stress, Mohr’s circle, stress analysis, failure criteria, Tresca criterion, solid 力学, material science, structural design, normal stress.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢